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ABSTRACT

Uses the algebraic approach in the queuing theory to
derive the M/G/1 equilibrium solution for the number of
jobs in the system when the probability distribution
function representing the general distribution is the
generalized exponential (GE-type). Similarly the GE/M/1
system is solved. Furthermore, it has been shown that as
expected the solutions are equivalent to the maximum
entropy solutions of the M/G/1 and G/M/1 systems
respectively at equilibrium.
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1.0 INTRODUCTION

Transforming the queuing system problems from one of
the integral equations to one of the algebraic equations
over a finite dimensional vector space [1] is called the
algebraic approach in queuing theory. A system of the
algebraic approach can be described by representing each
non-exponential service time (or interarrival time)
distribution by a collection of exponential servers, with
the constraint that the collection can only be accessed by
one customer at a time [2].

The algebraic approach is one of the most important tools
for modeling and analyzing the queuing systems. Many
problems in the queuing theory that are traditionally
solved by unrelated mathematical technique can now be
solved in a consistent integrated fashion. On the other
hand, many systems performance measures which are
normally ignored because of their computational and
formulation difficulties can be dealt with easily in the
linear algebraic approach of the queuing theory. And any
problem which can be cast into matrix-vector format can
easily be adapted to make use of the high-speed parallel
and vector processor available today [3].

Moreover, with the algebraic approach queuing systems
can be given formal descriptions which are more easily
understandable and more easily modifiable than the ones
obtained by many other models.
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The M/G/1 is a FCFS queuing system with Poisson
arrivals and general service time distribution while the
G/M/1 is of G-type arrival pattern and single exponential
server. The equilibrium solutions for the number of jobs
in the systems vary with the probability distribution
function chosen to represent the general distribution, and
the system performance is affected by the distribution
form of interarrival and service times. The GE
distribution represents a ‘natural’ information theoretic
choice for the G-type and of course, the GE pdf is an
‘external’ case of a family of distributions with a mixture
of exponential models, e.g. hyperexponential-2 (H2).
The interest in the GE distribution, as a universal model,
to approximate G-type distributions (when only the first
two moments are known) is motivated further by some of
its robust and versatile properties, which make it
particularly useful for the analysis of multiserver queues
and general queuing networks [4].

There is a very large number of two-stage models
representing the G-type distribution with the same mean
value and coefficient of variation. That means, if the
mean and coefficient of variation of the two-stage system
are given to be fixed constants and equal to the mean and
coefficient of variation of a given G-type distribution,
then solving the equations of the two-stage system will
result in having a solution with a free parameter which
means infinitely many solutions since this parameter can
take infinitely many values.

The procedure we follow is to write the algebraic solution
of the M/Ho/1 queuing system, then we change the
parameters of the hyperexponential function [5], by new
parameter k and the two parameters: the mean and
coefficient of variation.  After that we follow the
convergence of the two-stage function to the GE
distribution when the parameter k approaches infinity [4].
Similarly, the work is done for the Ho/M/1 queuing
system taking the advantage from [2] in representing the
system.

Finally we see that when the G-type distribution is
presented by the GE model, a linear algebraic approach in
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analyzing the M/G/1 and G/M/1 queuing systems becomes
exact.

2.0 THE M/GE/1 QUEUE USING THE LINEAR
ALGEBRAIC APPROACH

First, we represent the equilibrium solution for the queue
length in the M/Ho/1 queuing system in an algebraic
form, based on [3]. The system is described in fig. 1.
There are two phases in S1 with completion rates
u, ang, A customer upon entering goes to phase 1
with probability a, or to phase 2 with probability 1-a, and
then leaves S1 when finished.

S1
queue 0
_> t
S2
queue

A

O

Fig. 1: M/H2/1 queuing system

The following notations will be used:-

p is the entrance vector, whose ith component is the
probability that a customer, upon entering S1, will go to
phase i.

q' is the exit vector whose ith component is the
probability that a customer, upon completing service at
phase i, will leave S1.

P is the sub-stochastic matrix, whose ijth component is
the probability that a customer who has just finished
service at i will go to j.

M is the completion rate matrix, whose diagonal
elements are the completion rates of the individual phases
[ui = Mii].

€' is the vector, whose all elements are ones.

I is the identity matrix.

O is the zero matrix.

r(n) is the steady state probability that there are n
customers at S1.

A is the mean arrival rate.

u is the mean service rate.

p is the utilization factor.

Ci is the squared coefficient of variation for the service
time distribution.

C; is the squared coefficient of variation for the inter-
arrival time distribution.

The algebraic solution for the M/Ho/1 queuing system
can be written as the solution for M/G/1 system [3].

r(n)=@-p)wfu"| 1.2)

p= % = AW[V] (1.2)
X =W[V]=pVe' (1.3)
Vv=B7 (1.4)
B=M(l -P) (1.5)
U=A~t (1.6)
A:I+@\£%—Q 1.7)
Q=¢p (1.8)

Now, we follow the definition of the M/H2/1 queuing
system to construct its algebraic solution:

Since the probability for a customer to enter phase 1 is
equal to a, then the probability to enter phase 2 is equal to
1-a since the summation of the entrance probabilities
should equal to 1. So, the entrance probability vector is:

p=[a 1-qa] (2.1)
And the completion rate matrix has the completion rates

of the two phases in its main diagonal with the rest of its
elements zeros.

m, Oo
M=C : (2.2)
DO o0

A customer entering S1 has the right to be served by one
and only one of the two servers, and after finishing service
at the chosen server it can not be served by the other one,
i.e., service is finished for that customer and it has to exit
from S1. In matrices this means that the travel probability
matrix is the zero matrix and the exit vector is the unit
vector, i.e.,

0 0o

pP=0 0

0 0

(2.3)
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do
q =00 (2.4)

Substituting (2.2) and (2.3) in (1.5) we get the service rate
matrix B,

B=M(-P)=M( -O) =M (2.5)
From (1.4) the service time matrix is:
0l 0 g
V:B’1:M’1=a: 1D (2.6)
0p _—0O
H  H.H

The mean service time is given by substituting (2.1) and
(2.6) in (1.3),

2.7)

_ Oo 1-a a 1l-a
X =W[V]=pVe' %]:—+
HJ_ H2 M1 H2

The transition rate matrix is given by substituting (2.1) in
(1.8),

dn 1-«a

[
Q:s'pzmga 1-0] =0 (2.8)
%LD 0

1-«a

OoOood

Substituting (2.5) and (2.8) in (1.7) we get the matrix,

_y.0lo,
A_I+B)\_HB Q
l O ! Oo m 1-aQ
-0 bER mo o
3) 15 )\DO Mo 1-ap
E'%+1—a a—lg
=0 0 (2.9)
0 —q 2 40O
g A gd

Taking the inverse of A from (2.9), we get the important
matrix,

1 X
i, apy (I-a)u,
T+ +
A A A

U=A"-=

Eﬂl+a 1-a S
o} 0 (2.10)
: «  Bi1-q0
g A g

Finally, the queue length probabilities are given by,

i = (1-p)e[U] =@-p)pUe

0 o
:(1—p)[q 1—(]]5 1 g X
g, oy (i,
O a2 A A O
mat o
BD_ALJ'G 1-a $ Elg o1
O .
Lo el-agfd

For the two-stage M/G/1 queuing system we have the
following:

=—+ (3.1)
M1 M2
and,
[] 1-a0O
G
Oa 1-a0
o—+ 0
Dul u2 O

We can have infinitely many two-stage systems with the
same mean and coefficient of variation by changing one of
its parameters. We can write [5],

u, = kap (4.2)
_k(1-a)u
TR 2

Constraint (3.1) is still true.
We substitute the new representation of |4, from (4.1) and

u, from (4.2), in (3.2), and solve for o to get,
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c?- 2
+
2(C? +1) k(C? +1)
(c2-1%+8(C?-1)/k+(@1-C )/kz)
2(C%+1)
In the M/H 2 /1 queuing system as the ‘tuning’ parameter
k approaches infinity Hp . GE.

a(k) =

(4.3

By substituting (4.1), (4.2) and (4.3) in (2.11) we get,

D"Ill u12|:r|] |jl-|:|
rn) =@-p)a(k) 1-a(k)] O 0 oo

A, w,5 df

Taking the limit of (5.1) ask — 0,

lim[r(n)]=(-p) lim([a(k) 1-ak)])x

im s 1l

(5.1)

5 a0
(Cs+)p O OO

(5.2)
0 (C52 —1)p+2% B-H

2 _
Substituting y. = 952—1 o CG L 2, and

G +1- 2@y, +1) in (5.2) we get,

L 0 0 dy

0 D

r(n=(1- p) oo
ES/ 1y, 1uéb py+1%g@

_ (1o p)—H0:* Do (5.3)

Y. +1opys+ 10

This solution is equivalent to the maximum entropy
solution of the M/G/1 queuing system given in [5].

3.0 THE GE/M/1 QUEUE USING THE LINEAR
ALGEBRAIC APPROACH

What we are going to do here is the same as we did in the
previous section i.e., from the solution of Ho/M/1 we get
the solution of GE/M/1 by taking the limit when the
parameter k goes to infinity, and compare the result with
the maximum entropy solution of the G/M/1 queuing
system.

The G/M/1 queue is a FCFS queue with a general arrival
process and exponential service time distribution.

Similarly, the matrix U representing the G/M/1 queuing
system can be obtained by changing the p to its reciprocal
in the matrix U representing the M/G/1 queuing system

[2].

So,
© S0 0
0O Ci+1 0 9 0
. O O
k|Im U=rg P 0= %) C§ +1 0O (6.1)
- O 2_ O 2 _
0 Ci 1+2D O C:-1+2pQ
O p O
The only eigenvalue of U is equal to
_C+1 6.2)

C-1+2p

According to [2] the queue length solution for the M/G/1
system is given in the following formula:

r(n)=pw "(w-1) (6.3)
where, w is an eigenvalue of U whose magnitude is
strictly larger than the magnitude of all other eigenvalues
of U

Hence, substituting (6.2) in (6.3) we get,

(n) = E C+1 IZIIZI C+1 D
P 0C -1+2 DDC2 1+ 2DD
2p(l— p) 0 - 1+ZpD

1+20 C+1 0 ©4
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2

Letting y, = a2

then we have,

Ci -1 2ya
Cezl +1- 2(ya +])
Substituting (7.1) and (7.2) in (6.4) we get,

(7.1)
(7.2)

r(n) = (1- L%MH 8
() = (L-p) S0t ®)

which is also equivalent to the maximum entropy solution
of the G/M/1 queuing system.

4.0 NUMERICAL RESULTS

The probabilities of finding n customers in the queue of
the coaxial server “Cs” has been calculated for the two
systems i.e., (M/GE/1 and GE/M/1) when the coefficient
of variation is 1, 1.25, 1.50, 1.75, 2.00, 2.25, 2.50, 2.75,
3.00, 3.50, varying the utilization factor p from 0.1 to 0.9
(by an increase of 0.1) for each value of the coefficient of
variation. In each case the probabilities were calculated
for n “the number of customers in the queue of the coaxial
server” started from O i.e., the probability of finding no
customer in the queue until n = 30.

The generated data is studied by comparing the

probabilities of the two systems and the effects caused on

both by changing the parameters Cg and p.

Firstly, it is known that the queue length probabilities are
exactly equal and are equal to (1-p)p" when the
coefficient of variation is equal to one. As an example,
this is shown in fig. 2 when p = 0.6.

B M/GE/1
OGE/M/1

0 3 6 9 12 15 18 21 24 27

(n): Number of customers in the queue

Fig. 2: The queue length probabilities for the M/GE/1
and GE/M/1 queuing systems with utilization
factor = 0.6 and coefficient of variation = 1

For a fixed value of C > 1 the difference between the
probabilities of the two systems is clearly noticed
especially for the first few n’s i.e,, (n = 1, 2, 3) an
example shows this in fig. 3.

HM/GE/1
OGE/M/1

0 2 4 6 8 10 12 14

(n): Number of customers in the queue

Fig. 3: The queue length probabilities for the
M/GE/1 and GE/M/1 queuing systems with

p=01 and CZ=175

On the other hand, when the utilization factor p gets

larger the difference between the probabilities of the two
systems is getting smaller and smaller until it becomes
valueless (around 0.001) for large values of p (like 0.7,
0.8, 0.9). This is shown in fig. 4.

B M/GE/L
OGE/MA

0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01

0

r(n)

0 3 6 9 12 15 18 21 24 27

(n): Number of customers in the queue

Fig. 4: The queue length probabilities for the GE/M/1
and M/GE/1 queuing systems with p = 0.9 and

C2 =175

For a fixed p the difference between the two probabilities
gets smaller but slowly, as the coefficient of variation
increases.
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mutilization = 0.1
mutilization = 0.2
mutilization = 0.3
gutilization = 0.4
mutilization = 0.5
m utilization = 0.6
mutilization = 0.7
m utilization = 0.8
m utilization = 0.9

Fig. 5: An M/GE/1 queuing system with coefficient of variation = 2.25

Finally, for the M/GE/1 or the GE/M/1 as the utilization
factor increases the sharpness in the beginning of the
curve representing the probabilities, decreases to get
closer to the other probabilities, fig. 5.

5.0 CONCLUSION

The queue length probability formulas for both the
M/GE/1 queuing system and the GE/M/1 queuing system
have been successfully derived through the algebraic
approach of the queuing systems. The formulas are the
same as those of the maximum entropy solutions of M/G/1
and G/M/1 queuing systems respectively.

The systems have been studied and compared with each
other under various conditions and some of these cases
have been represented in suitable figures.

As a future work, the queue length formulas for both the
M/GE/C and GE/M/C queuing systems will be derived by
following the same procedure, i.e., representing the
algebraic solutions of M/Ho/ C and Ho/ M/C systems.
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