Malaysian Journal of Computer Science, Vol. 9 No. 1, June 1996, pp. 25-31

RESPONSE TIME CONSIDERATIONS IN REALTIME SOFTWARE DESIGN

Palaniappan Sellappan
Faculty of Economics & Administration
University of Malaya
50603 Kuala Lumpur
Malaysia
Fax: 603-7567252
Tel: 603-7593693
email: sella@fsktm.um.edu.my

ABSTRACT

Identifies several factors that affect the design of realtime
software and then discusses some approaches that a
software developer may use to meet the inherent timing
requirements of realtime software.

Keywords: distributed processing, realtime software,
response time, software design
1.0 INTRODUCTION

There is a growing demand for distributed realtime
applications in today’s business environment. Users must
interact with computers to obtain up-to-date information
(e.g., flight information, customer inquiry, courier
services). Many applications today also require
computers to monitor and control devices (e.g., traffic
lights, hospital and manufacturing equipments). The
software requirements for such time-critical realtime
applications are often stringent. Therefore, they must be
designed as efficiently as possible.

A realtime software must be responsive to the timing
needs of a client’s application. It must not only satisfy the
functional requirements of the application but also the
performance requirements, especially the response time
requirement. A realtime software is considered defective,
and therefore unacceptable, if it passes all other
requirements (e.g., logic, accuracy, human interface) but
fails to meet the client’s response time requirement [3, 4,
5, 6, 7, 8]. That means, software developers must make a
concerted effort to incorporate features that will satisfy the
client’s timing requirement (in addition to all other
requirements). This paper lists some of the factors that
influence response time and discusses some
approaches/techniques that a software developer can use
to meet the application’s (client’s) timing requirements.
(It does not address other user requirements such as
accuracy, completeness, human interface, logic, and
design structure which must also be satisfied).

25

2.0 DEFINITION OF RESPONSE TIME

For the purpose of this paper, we will define response
time as the elapsed time between the submission of a
request by user (human, software, or device) and the
system’s response to that request. Note that this definition
includes the elapsed time between a software’s or device’s
submission (transmission) of data or transaction record (in
the form of signals) and the system’s response to that
request.

3.0 FACTORS AFFECTING RESPONSE TIME
There are many (often interacting) components (factors)
that affect the response time of a system. Some of these
factors are hardware, software, methods, tools, network
structure and the system environment [2,5,7,10,12,13]. A
software developer must take these and other factors into
consideration when designing a realtime software.
Depending on the client (customer), some of these factors
may act as constraints that the software developer must
accept as given (e.g., hardware, operating system) while
others (e.g., algorithms, data structures) provide
opportunities for the software developer to experiment
with. The software developer must be aware of those
factors that he can control and those that he cannot. The
primary objective of this paper is to identify and list some
(by no means all) of the main factors that affect the
response time of a system and discuss some approaches
that a software developer can take to meet the response
time requirements of a realtime software.

40 APPROACHES TO HANDLE RESPONSE

TIME REQUIREMENTS

For the purpose of illustration, let’s first create a scenario
and then discuss some approaches that a software
developer might use. Suppose, your organization, a
software house, has just finished developing a realtime
software for a large financial institution that has several
branches in the country. Overall, your client is satisfied
with the quality of your company’s software except for the
response time. Your client has requested your

Sellappan

organization to lower the maximum response time from
the present 15 seconds to 10 seconds. The software
project manager has asked you to handle this problem.
What can you, as a software developer, do to solve this
problem?

As mentioned earlier, numerous (often interacting) factors
affect the response time of a system. Some of the factors
are hardware, software, tools, methods, network
architecture and topology, and system environment. We
will discuss some aspects of these factors in the next
subsections.

4.1 Hardware

The type of computer hardware used will invariably
affect the response time of a system. Hardware
characteristics include single versus parallel processors,
RISC (reduced set instruction set computer) versus CISC
(complex instruction set computer), processor speed, word
length, RAM and cache size, bus (i.e., control, address
and data) width and the speed of 1/0O devices. All these
hardware characteristics will affect the performance of a
computer system which, in turn, will affect the system’s
response time. For example, a multiprocessor will
generally execute faster than a single or uniprocessor as it
can perform many computations concurrently (i.e., in
parallel). Similarly, if the type of data processed is
largely simple (e.g., character or integer type). A RISC
will execute faster as it requires fewer memory accesses.
Likewise, a larger and faster RAM, cache, bus width, and
1/0 devices can improve the response time of a system
considerably [11,13].

In a network environment, the hardware will also include
the transmission medium and its capacity and speed,
modems, multiplexers, bridges, routers and switches. The
capacity and speed of these devices will undoubtedly
affect the response time of a system [10,14,15].

A software that fails to meet the timing requirements with
one type of hardware configuration may satisfy the
requirements if the hardware is replaced with a different
configuration. If the cost of changing the hardware
configuration is cheaper than the cost of modifying a
complex piece of realtime software that is correct and
acceptable in every respect except the response time
requirement, it may pay the software developer (or the
client) to simply replace or upgrade the hardware
configuration. The realtime software can go into
production straightaway thus enabling the client to
perform his business operations sooner. If this is a novel
application, the client may gain an edge over his
competitor.

However, replacing or upgrading computer and
communications hardware for the sake of one realtime
application software may not always be feasible as it can

26

be quite costly (e.g., replacing an expensive mainframe
computer or communication devices). It can also be
costly from the point of view of time and inconvenience.
Changing the hardware configuration may also affect the
existing applications.

4.2 Operating System

A realtime software, like any other software, must run
under an operating system platform. If the operating
system is slow, the realtime software that runs under it
will also be slow and vice versa. Therefore, an operating
system that runs time-critical applications must be
efficient in order to satisfy the response time
requirements.

An operating system consists of several modules such as
process, memory, 1/O and file management modules. All
these modules must be designed efficiently in order to
provide the requirements of a realtime software.

Some of the main operating system components that affect
system performance are: process switching, interrupt
processing, memory management, file management and
input/output. A multitasking or multiuser operating
system must manage several processes concurrently, i.e.,
it must interleave the execution of several processes. This
requires switching processes, e.g., when a process is
blocked for 1/O, the processor can work on another
process. Process switching, like any other operating
system function, is actually an overhead, but a necessary
one. To switch to another process (in the ready queue),
the operating system must save the state (e.g., process
control block, stack) of the current process so that it can
be safely restarted at a later time. It also requires the
restoration of the state of the switched process. All this
takes up processor time. As an operating system must
switch processes frequently to provide better throughput
and to optimize the use of system resources (such as
processor, memory, and 1/O devices), its implementation
must be very efficient. The thread concept used in
modern operating systems (such as OS/2, Windows 95
and Windows NT) promises to reduce this switching
overhead to some extent. Related to process switching is
the context switching. This also requires a time overhead,
but it is less compared to process switching [11,13].

Another area of concern is interrupt processing (including
multiple or nested interrupts). Like process (or context)
switching, interrupt processing is also a necessary
overhead. As interrupts occur very frequently, they must
be processed efficiently. This can be achieved by coding
the interrupt handlers efficiently. Also, to meet the
response time requirements, interrupts associated with
realtime applications must be given higher priorities
[7,11,13].

1/0 techniques, e.g., programmed 1/O and direct memory
access (DMA) can also influence the speed of processing.
For example, if the amount of information read from or
written to a disk is large, the DMA technique would be a
better choice than the programmed 1/0.

Buffering can also affect the response time. All 1/O
requires some kind of buffering. A system can use one,
two or multiple buffers. Using many buffers will
obviously improve the processing and hence the response
time. The method used in scheduling disk access (e.g.,
LRU, SCAN, C-SCAN) will also affect the response time.
Thus it is important to choose one that gives the best
performance [11,13].

Similarly, the memory management technique used can
affect the response time. For example, in virtual memory
management, the page size, number of frames allocated to
a process and page replacement algorithm will all have a
bearing on the response time. Some may give better
response time than others.

The file access method (e.g., sequential, indexed, direct)
and the file allocation method (e.g., contiguous, linked or
indexed) used can also affect the response time. Which
file access method is better depends, to some extent, on
the application. If an application requires only retrieval,
the direct access method (or hashing) may be a better
choice. However, if it requires, reading and writing
records, the indexed file allocation method may be better
than the others. Similarly, for sequential access, the
contiguous method may be a better choice [11,13]. It is
not always easy to determine which one is the best as all
these access methods may be used in a computer
environment.

Operating systems are designed for all types of users.
Therefore they have to be quite general. A general
operating system will meet the needs of most
organizations. However, it is likely to be a little
inefficient for any particular organization as the
organization may not require all the features contained in
the operating system. It may just require some features,
but implemented very efficiently. Thus, if an organization
requires fast response times, it might want to consider
fine-tuning the existing operating system or perhaps
develop its own customized realtime operating system
(RTOS).

27

Respone Time Considerations in Realtime Software Design

As you can see, the software developer may modify the
operating system in one or more ways to achieve his
purpose, i.e., to meet the response time requirement. Or,
he may not have much choice in the matter if the client
chooses not to alter the operating system (maybe because
it may affect other existing applications). Also, changing
or fine-tuning an operating system (especially a
mainframe operating system) can be an expensive
exercise.

4.3 Languages

The language used to develop a realtime application may
also affect the response time. Programs written in
assembly language will generally execute faster than those
written in higher level languages such as 4GLs. Similarly,
a strongly typed language such as Pascal will execute
faster than a weakly-typed language such as C++, as the
former does not require type-checking [6,7,8].

Some compilers will optimize and generate efficient code
and thus improve the speed of execution. They may also
generate code that makes use of a machine’s internal
registers which can further improve the execution speed.
The two C++ programs given in Fig. 1 illustrate these
concepts.

Program 1 is inefficient compared to Program 2. In
Program 1, the statement num=5; is executed 1000 times
as it appears inside the for-loop. An optimizing compiler
would remove the statement and place it before the for-
loop as shown in Program 2. Also, Program 1 does not
use any register variables. Declaring i and num as
register variables will improve the processing speed.

If the computer has multiprocessing capabilities, a
concurrent language (e.g., Concurrent C++ or Concurrent
Pascal) can help to reduce the response time. This is
illustrated in Fig. 2. The syntax cobegin-coend (i.e.,
concurrent begin - concurrent end) in Program 2 is not
part of C++. It is used here for the purpose of illustration
only.

In Program 1, the first four assignment statements are
executed sequentially whereas in Program 2, they are
executed concurrently (assuming there is a multi-
processor). Thus, using a concurrent language the
response time can be improved considerably especially if
the tasks can be performed concurrently (as in processing
large arrays or simulation modelling).

Sellappan

/I Progam 1 - inefficient
#include <iostream.h>
main()
{ - -
inti, num;
longint sum=0;
for (i=0; i<1000; i++)
{
num = 5;
loop
sum =sum + i*i + num;
}
cout << “\n” << sum;
return 0;

}

/I assigns inside

/I Program 2 - efficient
#include <iostream.h>

main()

{
reg int i, num; // uses registers
longint sum=0;
num = 5; /I assigns outside loop

for (i=0; i<1000; i++)

sum =sum + i*i +num;
cout << “\n” << sum;
return 0;

Fig. 1: An efficient and an inefficient program

/I Program 1 - sequential
#include <iostream.h>
main()
{
inta, b, c, d, sum;
a=1,;

21
3
4

b
c
d

sum = a+b+c+d;
cout << “\n” << sum;
return O;

/I Program 2- concurrent
#include <iostream.h>
main()
{
inta, b, ¢, d, sum;
Il All statements in the cobegin - coend
I block are executed concurrently
cobegin
a=1;
b=2;
c=3;
d=4;
coend;
sum = a+b+c+d;
cout << “\n” << sum;
return O;

¥

Fig. 2: A sequential and a concurrent program

Databases

in various locations.

It is usually implemented by

A network database can be centralized or distributed. A
centralized database stores all the records in one location
(or node) whereas a distributed (or decentralized)
database stores the copies of the same database in
different locations. Each has its advantages and
disadvantages. A centralized database is more suitable if
updating occurs frequently as it requires changing in only
one location. However, accessing it from a remote
location will take longer time (and will also cost more as
it requires transmitting data over a network). A
distributed database in this case will reduce the remote
access time (and cost). However, updating it can be quite
time-consuming as changes must be made simultaneously
in all locations. All accesses to the database copies must
be denied until they are all updated and verified. This
requires quite a bit of coordination between the computers

28

maintaining a master clock and using some kind of time
stamping. As the implementation itself requires
transmission of control data, it is unlikely to be efficient
from the point of view of response time requirement [5,7].

Another database approach that can be used is the
partitioned or segmented database. A segmented database
is stored in different places. Only a segment, i.e., part of
the database, is stored in any one location. Typically, the
records that will be accessed most frequently in a
particular geographical location are stored in that location.
This approach will generally improve the response time
(besides reducing transmission cost). Thus this approach
may be more appropriate for fulfilling the response time
requirements [5].

The client or the software developer must therefore
consider the above factors when designing databases for
realtime applications. The client/server model addresses
this issue to some extent. It attempts to distribute the
processing functions optimally across a network. The
workstations generally provide the graphical user interface
required by end-users while the server provides the
database management functions [13,14].

45 Algorithms

Algorithms are important in the design of any software,
especially realtime software. The same task can be
accomplished in one or more ways, i.e., by several
algorithms. But some algorithms are more efficient than
others. For example, there are many sorting algorithms
that one can use, but some (e.g., Hoare’s quicksort) are
clearly more efficient than others. Similarly, there may be
many to traverse a tree-type data structure, but some may
be better than others for any given application. For
example, the inference engine of an expert system can use
the depth-first, breadth-first or best-fit approach to arrive
at a solution. The expert system software developer must
experiment and select an algorithm that best suits his
needs.

There is also a processing overhead (e.g., stack
management) associated in a function or procedure call
[13]. Although modularisation is good from the software
design point of view, it can nevertheless degrade the
response time of a system, especially if it has too many
functions or procedure calls (such as those applications
that require the use of recursion).

Using macros instead of function or procedure calls can
improve the execution (and hence the response time) as
they do not incur the overhead of function or procedure
calls. The macros are simply substituted in the code
wherever they appear or are referenced in the source
program. Using macros, however, will increase the
amount of memory required to store the program,
especially if they are called or referenced in too many
places in the program. Similarly, the use of inline
functions in object-based programs will achieve the same
purpose. The software developer must consider these
factors when designing a realtime software.

4.6 Data Structures

The type of data structures used can also affect the
response time. For example, using a variable type of
register or unsigned short integer for a loop index may be
faster than just using an integer variable. Similarly; using
a one-dimensional array will be faster than using a two-
dimensional array; an array, faster than a linked list; and a
numeric type data, faster than a character type data
[6,7,8].

29

Respone Time Considerations in Realtime Software Design

4.7 Network Factors

There are many network factors that can affect the
response time of a system, e.g., type of channel (e.g.,
leased, switched) used and its speed, attenuation,
transmission techniques (e.g., multiplexing, com-pression,
circuit/packet switching), type of modems, bridges and
routers and their speed, number of nodes in the network,
network architecture (e.g., LAN, MAN, WAN) and
topology (e.g., bus, star, ring), transmission techniques
(e.g., frame relay, asynchronous transmission mode), and
network standards (e.g., OSI, ISDN) and compliance to
these standards [14,15]. It is beyond the scope of this
paper to discuss all these factors that will affect, to one
degree or another, the response time in a distributed
system. Here, we will merely discuss a few.

The type and speed of transmission channel used will
certainly affect the response time. Using a leased line
(even it costs a little more) will undoubtedly improve the
response time compared to using a dialup or switched line
as the latter requires call setup time. The bandwidth of a
channel will also influence the response time - the larger
the bandwidth, the better will be the response. You will
also need faster modems to go with the high bandwidth.
The type of transmission medium used will also affect the
response time. Currently, fiber optics offers the highest
speed compared to other media such as twisted-pair or
coaxial cable. Additionally, instead of using the analog
telephone line (which requires signal conversion), an
organization may decide to go all digital, e.g., by using
fiber optics. This will not only result in faster
transmission but will also reduce the error rate. The
combined effect of increasing the data rate and reducing
retransmission (as a result of lower error rate) will
improve the response time considerably in distributed
processing [9,10,14,15].

Data compression and multiplexing techniques, even if
they incur some overhead, will also help to improve the
overall data rate in a distributed system, which in turn,
will reduce the response time.

Using standards such as OSI and ISDN will likewise
improve the data rate (and hence the response time) as
they will minimize the amount of conversion work needed
to transmit messages on a network. Using intelligent
routers will also improve the response time as they will
route data using the best possible paths, i.e., paths which
are least congested.

The level of data encryption/decryption for transmission
over a network can also affect the response time. That
means, encryption must be kept to the minimum (although
this may cause security problems in some applications).
Similarly, too much error checking can also reduce the
transmission rate and hence the response time. The newer
transmission technologies such as frame relay and cell

Sellappan

relay (asynchronous transmission mode) minimize such
error checking by simply trusting in the reliability of the
transmission media (whose quality has certainly improved
over the years). Thus by providing better data rates, these
newer technologies can help to minimize network delays
[14.15].

A distributed realtime application may also use modern
techniques such as remote procedure call (RPC) or
process migration (PM) to improve the response time
[1,4,9,13,14]. To illustrate, let’s suppose a user submits a
query to the system in Location A to obtain summary
information of a database stored in Location B (a remote
location). This can be accomplished either by using either
Program 1 (Fig. 2a) or Program 2 (Fig. 2b). If the
database is large, the second approach is clearly faster
(and cheaper as it reduces the communication cost).

Process migration is quite similar to remote procedure call
except that the process itself is migrated from Location A
to Location B and executed there. One reason why a
process may be migrated from one location to another is
to achieve network load balancing. Perhaps the current
workload at Location A is very heavy and this may cause
a process to actually take a long time to respond to a user
request. In this case, it might be expedient to just migrate
that process to Location B so that it can execute them
faster [1,2,10,13,14]. These techniques - remote
procedure calls and process migration - will become more
popular as nations move towards information superways
using advanced technologies such as optical fibers, ATM
and ISDN.

/I Program 1 - at location A
summary()
{
open remote fileB;
while <!EOF (fileB)>
{
read a record from fileB;
update summary information;

}

write summary information;

}

/I Location B

~ [

fileB record

Fig. 2a: Algorithm without RPC

/I Program in Location A

summary information

from Location B; [

/I Program 2 - at location B
summary()

open fileB;

while <!EOF (fileB)>

{
read a record from fileB;
update summary information;

}

send summary information to
Location A;

Fig. 2b: Algorithm with RPC

30

5.0 FACTOR INTERACTIONS

So far, the paper merely presented possible ‘stand-alone’
solutions to the response time requirement. Clearly, the
above solutions can be used in concert (i.e., combined) to
achieve the desired minimum response time. For
example, multiplexing and compression techniques can be
used together to achieve a higher data rate. Similarly,
efficient algorithms and data structures can result in a
better response time. A combination of all the above
solutions can further improve the response time.
However, to experiment with all these factors is not a
trivial task. There are too many combinations to consider.
It is a combinatorial problem requiring much study and
analysis. The software developer must use techniques
such as queuing and simulation to study and analyze the
response times. In this way, it is possible (even though
costly) to satisfy the response time requirements in
distributed realtime applications.

6.0 CONCLUSION

As mentioned at the beginning of the paper, there is a
growing demand for distributed realtime applications.
Such applications require fast response times as users or
machines must interact with computers to obtain up-to-
date information. A realtime software is considered
defective, and therefore unacceptable, if it passes all the
requirements (e.g., logic, accuracy, human interface) but
fails to meet the response time requirements of the client.
In other words, a realtime software must be very
responsive to the timing needs of the application. That
means, software developers must make special effort to
incorporate techniques that will meet the timing
requirements of the client. This paper has identified a list
of factors (not comprehensive by any means) that a
software developer must consider. Then it went on to
discuss some possible approaches and techniques that the
software developer can use to meet the inherent timing
requirements of a realtime software.

REFERENCES

[1] Y. Artsy, and R. Finkel, Designing a Process

Migration Facility, IEEE Computer, VVol. 22, 1989.

[2] A.Burns, and A. Wellings, Real-Time Systems and
Their Programming Languages, Addison-Wesley,
1990.

[3] lan Sommerville, Software Engineering. Addison-

Wesley, 1993.

31

Respone Time Considerations in Realtime Software Design

[4] C. L. Liu, and J. W. Layland, Scheduling
Algorithms for Multiprogramming in a Hard Real-
Time Environment, Journal of the ACM, Vol. 20,
1973.

[51 I. Martin, Analysis And Design Of Business
Information Systems. Prentice-Hall, 1995.

[6] Pfleeger, Software Engineering: The Production of
Quality Software. Maxwell ~ Macmillan
International, 1991.

[71 R. S. Pressman, Software Engineering: A
Practitioner’s Approach. McGraw-Hill Inc., 1992,

[8] Schach, Software Engineering. IRWIN, 1993.

[91 K. Schwan, and H. Zhou, Dynamic Scheduling of
Hard Real-Time Tasks and Real-Time Threads,
IEEE Computer, Vol. 18, 1992.

[10] K. Shin, HARTS: A Distributed Real-Time
Architecture, IEEE Computer, Vol. 24, 1991.

[11] A. Silberchatz, and P. Galvin, Operating Systems
Concepts. Addison-Wesley, 1994,

[12] A. S. Tanenbaum, Distributed Operating Systems.
Prentice-Hall, 1995.

[13] William Stallings, Business Data Communi-
cations. Prentice-Hall, 1995.

[14] William Stallings, Operating Systems. Prentice-
Hall, 1995.

[15] William Stallings, Data And Computer
Communications. Prentice-Hall, 1994.

BIOGRAPHY

Palaniappan Sellappan obtained his BEc from the
University of Malaya in 1970, his MSc in Computer
Science from the University of London in 1973 and his
PhD in Information Science from the University of
Pittsburgh in 1978. Currently, he is an Associate
Professor in the Faculty of Economics & Administration,
University of Malaya. His research areas include object-
oriented technology, decision support systems, business
data communications, EDP Auditing, database, software
engineering and simulation. He is a member of the British
Computer Society and The Engineering Council (UK).

