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ABSTRACT

This paper introduces a new class of assignment decision diagrams (ADD) called thru-testable ADDs based on a
testability property called thru function. The thru-testable ADDs is an easily-testable set of thru functions that allows
data transfer from its input to its output. We also define a design-for-testability (DFT) method to augment a given
ADD with thru functions so that the ADD becomes thru-testable. We compare the circuits modified using our
proposed method with the original circuits and partial scan designed circuits in terms of fault efficiency, area
overhead, test generation time and test application time. Since the proposed DFT method is introduced at a high
level, which deals with less number of gates, the information of thru functions can be extracted more easily. As a
result, it lowers the area overhead compared to partial scan.
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1.0 INTRODUCTION

With the advance in semiconductor technology, the complexity of Very Large Scale Integration (VLSI) designs is
growing and the cost of testing is increasing. Therefore, it is necessary to reduce the cost but enhance the quality of
testing. The cost of testing depends mainly on the test generation time and test application time. The quality of
testing is measured by fault coverage. Therefore, we have to reduce test generation time and test application time
while enhancing fault efficiency. In order to reduce the complexity of the test generation for a circuit, a design-for-
testability (DFT) method is introduced [1-2]. The previous DFT methods are summarized in the following
subsections.

1.1 Design-for-testability at Gate Level

Various DFT methods have been proposed to augment a given circuit to make it more easily testable. The most
commonly used DFT method is the scan technique (full or partial) [3-5]. However, the area overhead of a full scan
technique is large because all flip-flops are augmented and chained together into a scan path. Another disadvantage
of this technique is long test application time, which is a result of the shifting of test vectors through the scan chain.
Therefore, the cost of testing using the full scan technique increases due to the large area overhead and long test
application time. In order to reduce the area overhead, a partial scan technique has been proposed in which only a
subset of the flip-flops is included in the scan path. It can save an area overhead while maintaining high fault
coverage. In a partial scan, the scan flip-flop selection is based on the concept of minimum feedback vertex set
(MFVS), where only a minimum number of flip-flops is selected to be scanned. However, the DFT at the gate level
deals with a huge number of gates that may incur a higher area overhead.

1.2 Design-for-testability at High Level
By applying the DFT method at a high level, the number of primitive elements to be dealt with in the circuit is

reduced [6]. Moreover, DFT at high level can be applied in the early design phase to reduce the area overhead.
Moreover, the information extraction from a high level description is much faster than that from a gate level netlist.

Several non-scan DFT methods at RTL which use normal data path flow as a scan path have been proposed.
These methods reduce hardware overhead and test application time compared with the full scan design. However, the
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test generation time cannot be reduced because the test generation approach is the same as the full scan design. In
the H-scan technique [7], some extra gates are added to the logic of the existing path so that signals transferred
between the registers is enabled by a new input independent on the signals from the controller.

The design-for-testability based on strong testability in [8-9] is guaranteed to generate test plans for all
combinational hardware elements of the data path. However, the DFT methods in [8-10] assumed that a controller
and a data path are separated from each other and the signal lines between them are directly controllable and
observable from the outside of circuits. Therefore, extra multiplexers are added to the signal lines in between a
controller and a data path, and an extra test controller is also embedded to provide the test plans for the data path.
The method in [11] allows speed testing and achieves a much shorter test application time compared to the full scan
approach. However, the hardware and delay overheads are larger compared to the full scan approach because of the
extra multiplexers and test controller.

The previous works show that DFT methods treat data path and controller separately. In fact, they need the
insertion of additional hardware, like a test controller to control the data transfer from the primary input to the
targeted fault and from the targeted fault to the primary output. In this paper, we introduce a new DFT method using
a high level modeling known as Assignment Decision Diagram (ADD) [13] extended from the previous work that
has been done in [12]. Different from [12], we abstract the DFT from the gate level and extend it to RTL.
Additionally, our DFT method treats data path and controller unanimously. The DFT method augments a given RTL
circuit based on the testability properties called thru function. We extract the thru function from the high level
description of a given RTL circuit. Our method will improve test generation time and test application time as well as
fault efficiency.

This paper is organized as follows. In Section 2, we briefly review ADD. We present how to extract thru
function from ADD and define a representation of ADD called R-graph. We also define a new concept of special
class of ADDs called thru-testable ADD. In Section 3, we describe the test generation model for thru-testable ADD.
In Section 4, we present the DFT method to augment a given ADD with thru functions so that the ADD becomes
thru-testable. Experimental results are presented in Section 5 and the conclusions are in Section 6.

2.0 PRELIMINARIES
2.1 Assignment Decision Diagram (ADD)

ADD is the modeling of behavioral description that has been proposed previously for high level synthesis [13-16].
The ADD representation consists of four parts: the assignment value, the assignment condition, the assignment
decision and the assignment target. These parts are implemented with four types of nodes: read nodes, operation
nodes, write nodes and assignment decision nodes (ADN).

The assignment value part consists of read nodes and operation nodes. This part represents the computation of
values that are to be assigned to a storage unit or output port. This value is computed from the current contents of the
input ports or storage element or constants which are all represented by the read nodes. The assignment condition
part consists of read nodes and operation nodes that are also connected as a data-flow graph. The end product of the
computation is a Boolean value which is the guarding condition for the assignment value.

The assignment decision part consists of an ADN. The ADN selects a value form a set of values that are provided
at its value inputs. If one of the conditions to the ADN evaluates to true, then the corresponding input value is
selected. The assignment target is represented by a write node. The write node is associated with the selected value
from the corresponding ADN. A value is assigned to the write node only if one of the condition inputs to the ADN
evaluates to true. Although ADD was essentially introduced as an internal representation in the high level synthesis
process, it can be used to describe a functional RTL circuit, the controller part and the data path part of which are
homogeneously represented.

2.2 Thru Function

Thru function is an important property of a thru-testable ADD. A thru function is a logic that transfers the same
signals from the input to the output if the thru function is active. The bit width of the input and output are equal. We
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define the following definition to describe the thru function concept.

Definition 1. Let )X, Y and Z be a set of variables respectively in ADD where XNZ=[1 and YNZ=[1. A thru function
Lyyy is a logic, equality, relational and arithmetic operations such that
1. the operations connectives of the function consist of [1(AND), [J(OR) and —~(NOT), < (LESS
THAN), > (MORE THAN) and = (EQUAL);
2. the operation variables Z of the function and X consist of read nodes while Y consists of write
nodes;
3. the signals at X transfer to Y if Z has an assignment that makes the thru function ‘true’ or active
(txr=1).
Note that X and Y may have the same variables that make the thru function transfers the signal from one variable to
the same variable. This thru function is called self thru function.

Example 1: Fig. 1 shows two examples of thru functions. Two thru functions are independent if they cannot be
activated at the same time. Fig. 1(a) shows that thru functions ta 5B and tc B are dependent. Dependent thru
functions transfer signal at the same time and activated by same variable. In this case, signals from A and C are
transferred to B at the same time when a, is true. Fig. 1(b) shows that thru functions, ty spand tc pare independent.
This means data transfer from A to B cannot happen at the same time as data transfer from C to B. The former takes

place when a; is true.

2.3 R-graph

(@) (b)
Fig. 1. Thru functions

To facilitate the implementation of our DFT method, we introduce a graph representation called R-graph, which
contains the information of connectivity, thru function of an ADD. R-graph is defined as an ADD representation by
using read nodes as input and write nodes as output. The R-graph includes ADD properties of thru function, thru tree
and input dependency. Based on these properties, the class of thru-testable ADDs is defined.

Definition 2. An R-graph of an ADD is a directed graph G=(V,4,w,t) that has the following properties.

1. vV is aread node or write node. If a read node and a write node correspond to the same variable,
they are represented by the same vertex;

2. (v; v)[14 denotes an arc if there exists a path from the read node v; to the write node v;,

3. w:V—Z (the set of positive integers) defines the size of read or write node corresponding to a vertex
inV;

4. t:A—T0{0,1} (T is a set of thru functions) where #(u,v)=0 if there is no thru function for (u,v)['4 and

t(u,v) is a thru function that transfers signals from the read node u to the write node v. If #(u,v)=1 (also
called identity thru function), the signal values are transferred from u to v directly. Note that identity
thru function is always active.
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Fig. 3. An R-graph for ADD S1

Example 1: Fig. 3 shows the R-graph of the ADD Slof Fig. 2. Read nodes A, B, E, J, K, S, T, M, N, and F are primary
inputs while write node Y is primary output. An arc exists from the read node to the write node. For example, arc (A,D)
exists in the R-graph because there exists a path from read node A to write node D through an assignment decision node
(ADN). According to the R-graph, node D forms a self thru function. Note that vertices S, T, M and N are assignment
indices.

2.4 Thru Testability

The thru-testable ADD is a class of ADDs that is easily testable. The class of thru-testable ADDs is defined below.
Before defining the thru-testable ADD, we visualize a certain set of thru functions as a thru tree using R-graph
representation, which is defined as follows.

Definition 3. A thru tree is a sub graph of the R-graph such that:
1. it 1is a directed rooted tree;
2. there is only one sink (root) with no outgoing arcs;
3. the sources are vertices that correspond to primary inputs without incoming arcs;
4. each arc is labeled with a thru function.
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Fig. 4. Thru trees of R-graph for ADD S1

Example 2: Fig. 4 shows a thru trees of the R-graph of ADD S1. Each arc is labeled with a thru function. The sources
are represented by vertices that correspond to the primary inputs without incoming arcs.

Definition 4. If V; is a set of vertices that activates a thru function ¢ in a thru tree 7}, 7; is said to be dependent on V.
Furthermore, if V;; includes a vertex in a thru tree 7}, T} is said to be dependent on 7;.

Definition 5. Let G be the R-graph of ADD S, and let B be a set of thru trees in G. Let (u,v) be a set of all paths starting
at u and ending at v. Two distinct paths p;,p,[!(u,v) have input dependency if the following conditions are satisfied:

1. the first arc of one of the paths is different from the first arc of another path;

2. the first arc of at least one of the paths is labeled with a thru function in a thru tree in B;

3. each path contains at most one cycle;

4. p;and p, have the same length.

Input dependency can be resolved by self thru functions.

Using the newly defined concepts of thru tree and thru function, we can identify whether an ADD of an R-graph is thru-
testable or not.

Definition 6. An ADD is said to be thru-testable if the R-graph of the ADD contains a set of disjoint thru trees such that
the following conditions are satisfied:

1. the thru trees cover all the vertices of a feedback vertex set;

2. for any thru tree T}, T; is not dependent on itself;

3. for any pair T;, T; of the thru trees, if 7; (resp. T;) is dependent on 7; (resp. T;), T; (resp. T;) is not dependent on T;

(resp. T5);

4. for each pair of reconvergent paths p; and p,, p; and p, does not have input dependency.

The thru tree that does not depend on any vertex in any thru tree to become active is called independent thru tree.

t

te

(a) ADD S2
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t,=DT (7(P<Q))

(b) R-graph for ADD S2

(@ T4
() s(a)—"0)
(b) T2
t t
(c) Ts

(c) Thru trees of Ty, T, and T;

Fig. 5. R-graph of thru-testable ADD S2.

Example 3: Fig. 5(b) shows the R-graph of the ADD S2. Thru functions t;=C is activated by C. S2 is a thru- testable
circuit because there are three thru trees, namely T;, T, and T; (shown in Fig. 5(c)) that contain C, B and A which are
the vertices in the feedback vertex set (FVS). Moreover, each variable that activates the thru functions in each thru tree
is not a vertex in the thru tree. T, is dependent on T, because thru function t; in T is activated vertex by C in T;. But
thru functions in T, do not depend on any vertex in T,. There is also no input dependency in S2. Note that node C forms
a self loop. Other loop is combination of nodes C, A and D.

3.0 TEST GENERATION MODEL AND PROCEDURE

The test generation model is used to perform a test generation. The thru-extended time expansion model (TTEM) is
defined to perform test generation on thru-testable ADD.

3.1 Time Expansion Model

The time expansion model (TEM) is derived from the time expansion graph (TEG) for a given ADD represented by a
R-graph. The time expansion graph (TEG) is redefined to facilitate the discussion of test generation model for thru-

testable ADD.
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Definition 7. Let Gz=(V,4,z,¢t) be an R-graph of an ADD [15] S. Let G;=(Vi, A, F,l) be a directed graph, where V7 is a
set of vertices, Ag is a set of arcs, F' is a mapping from Vj to a set of integer and / is a mapping from Vg to the set of
vertices in R. If graph Grsatisfies the following five conditions, graph Gris said to be a time-expansion graph (TEG) of
Gr.

1. C1 (Input/Output preservation): The mapping / is a surjective, i.e., [IV1V,[ul1Vg, s.t. v=I(u);

2. C2 (Logic preservation): Let u be a vertex in Gr. For any direct predecessor v([pre(l(u))) of I(u) in G where
v#l(u), there exists a vertex u’ in G such that /(u’)=v and u’[] pre(u). Here, pre(v) denotes the set of direct
predecessors of v;

3. C3(Time consistency): For any arc (u,v) ([1A4g), there exists an arc (/(u),l(v)) such that F(v)-F(u)=1;

4. C4 (Time uniqueness): For any pair of vertices u,v ([1VE), if F(u)=F(v) and if /(u)=I(v), then the vertices u and
y are identical, i.e., u=v;

5. C5 (self loop consistency): For any arc (1,v) in Gr, if F(v)-F(u)=1 and [(v)=Il(u)=z, z is a self loop vertex and
the number of predecessor of v is one.

3.2 The Thru-Extended Time Expansion Model (TTEM)

A thru-extended time expansion model (TTEM) of a thru-testable ADD is created using R-graph and the thru trees.
TTEM is defined after the TTEG definition.

Definition 8. Let S be a thru-testable ADD [15] with thru trees B and let Gz=(V,A4,z,¢) be the R-graph of S. The thru-
extended time expansion graph (TTEG) G;=(V5ArF,l) with respect to B is a directed graph that satisfies the following
conditions.

1. (Input/Output preservation): The mapping / is surjective, i.e., OvOV, OullV,, s.t. v=I(u);

2. (Logic preservation for fault excitation phase): Let u be a vertex in Gy. For any direct predecessor v([] pre(u))
of u in Gy, there exists vertices y and x in Gy such that I(y) = u, I(x) = v, x [J pre(y) and |pre(y)| = |pre(u)|. Here,
pre(y) (resp. pre(u)) denotes the set of direct predecessors of y (resp. u) and |pre(y)| (resp. |pre(u)|) denotes the
number of all direct predecessors of y (resp. u);

3. (Thru tree for justification and propagation): Let u be a vertex in a thru tree T; in B in Gy. Let W1 pre(u) be a
set of all direct predecessors of u in T}. Let ¢ be a thru function on all incoming arcs of u in 7; and V; be a set of
vertices that activate #. For each u in T;in B in Gg, there exists a vertex v in Gr which satisfies the following
conditions;

a. l(v)=u;
b. For each vertex x in pre(v), the following conditions are satisfied.
i. If there exists a vertex w’ in W such that /(x) = w’ then x[] pre(z) for any z where /(z) is a
vertex included in any other thru tree T, except 7; and x[J pre(y) such that I(y) = /(x);
ii. Let T}, be a thru tree that is activated by I/(x). If I(x) = I(v), then |pre(v)| = 1 and x[ pre(z) for
any z where /(z) # /(v) and I(z) is a vertex that is not included in thru tree 7};
iii. If I(x)[0 Vy, then x[pre(z) for any z where /() # I(x) and /(2) is a vertex that is not included
in thru tree 7.
|pre(v)| is the number of vertices in pre(v).

4. (Time consistency): For any arc (i, v) ([ A7), there exists an arc ({(u), /(v)) such that F(v) — F(u) = 1;

5. (Time uniqueness): For any pair of vertices u, v (T1V7), if F(u) = F(v) and if () = I(v), then the vertices u and v
are identical, i.e., u = v;

6. (Self loop consistency): Let u be a vertex in Gr. Let v ([] pre(u)) be a predecessor of u. If |pre(u)| < |pre(l(u))]
and I(u) = I(v) =z then |pre(u)| = 1 and z is a self loop vertex;

7. (Input Independency): Let u, v be two vertices in Gr. Let p; and p; be a pair of reconvergent paths that start from
u and end at v. Let z be a vertex on p; such that u[] pre(z). Let x be a vertex on p; such that ulpre(x). For each
pair of paths p;, p; where z#x, |pre(z)| = |pre(l(z))| and |pre(x)| = |pre(l(x))|;

Definition 9. Let the given thru-testable ADD be denoted by S. The thru-extended time expansion model (TTEM) of S
is obtained by the following procedure.

e For each pair of consecutive read nodes, replace each vertex in the first slot with the corresponding read node.
Malaysian Journal of Computer Science, Vol. 23(1), 2010 7
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Replace each vertex in the second slot with the corresponding write node. Replace each arc with ADD nodes
between read node and write node according to the given R-graph.

Example 4: Fig. 6 shows the TTEG and TTEM for ADD S2. S2 has no input dependency. Note that node A has a self
thru function, tg

(a) TTEM for ADD S2
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(b) TTEG of S2

Fig. 6. Test generation model for thru-testable for ADD S2

4.0 DESIGN-FOR-TESTABIITY (DFT) METHOD
We introduce a new DFT method using a high level modeling known as ADD based on testability properties called
the thru function. The input to our DFT insertion is a RTL description which consists of non-separable data path and

controller. Fig. 8 shows our proposed DFT methodology.

Firstly, the behavioral description is transformed into ADD for thru function extraction. The procedure to extract thru
function consists of the following definitions and steps:

Definition 10. Let A4 be a read node and B be a write node. A connects to data input of an ADN and B connects from
the output of the ADN. If data transfer is allowed from path 4 to B, then 4 is called on-path input.
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Definition 11. Let 4 and B be read nodes and C be a write node. 4 and B connect to data input of the ADN and C
connects from the output of the ADN. If data transfer is allowed from path 4 to C then B is called off-path input.

Step 1

Step 2

Step 3

Identify a set of ADD paths where each path contains one or more of the following:

1.1
1.2
1.3
1.4
1.5

any input of addition node

the first input of subtractions node
any input of multiplication node
the first input of division node
any data input of ADN.

Compute the symbolic operations for each line in assignment value part and assignment condition part in terms
of variable of read nodes to obtain the operational expression for each line. For example, after the symbolic
operation of addition in Fig. 7, the operational expression for line a is (L+M).

For each operation node (resp. ADN) on each ADD path, identify the logic, equality, relational and arithmetic
operations or any combination of the operations that allows the data transfer from the input (resp. data input) of
the operation node (resp.ADN) to its output.

3.1

32

3.3

34
35

For an addition node, the condition is the inversion of the operational expression of the off-path input.
For example, in the addition node in Fig. 7, data of L is transferred to line @ when the off-path input M
is 0. In other words, the condition that allows data transfer is M’.

For a subtraction node, the condition is inversion of the operational expression of the off-path input.
For example, in subtraction node in Fig. 7, data of line « is transferred to line b when the off-path input
N is 0. In other words, the condition that allows data transfer is N”.

For a multiplication node, the condition is the operational expression of the off-path input. For
example, in the multiplication node in Fig. 7, data of read node N is transferred to line ¢ when the off-
path input F is 1. In other words, the condition that allows data transfer is F.

For a division node, the condition is the operational expression of the off-path input.

For ADN, the condition is the operational expression of the condition input that corresponds to the on-
path input. For example in Fig. 7, data of line b is transferred to write node N when H is 1.

Step 4 Given a path from a read node to a write node, obtain the thru function by ANDing all the conditions that allow
data transfer along the path. For example, in Fig. 7, the thru function from L to N (t. y~) = M".N".H.

Fig. 7. ADD S3

After extracting the thru functions, ADD is transformed into its R-graph and then identify its thru tree to make thru-
testable R-graph. If the R-graph is not thru-testable, we need the DFT insertion by adding minimum number of edges
with thru functions into the R-graph so that the R-graph becomes thru-testable. Definition and steps for DFT insertion
are taken as follows:

Definition 12. Let A4 be an input vertex and B be an output vertex. Let C be a vertex which activates a thru function t, 5B
If data transfer is allowed from A4 to B through a thru function t, ,c then C'is called an activator.

Step 1

Step 2

Using the depth first search, start traversing an input vertex to the output vertex without considering whether
the outgoing arc has a thru function or not. If the vertex is visited for second time, then the vertex is included in
the feedback vertex set (FVS).

For each vertex, choose the outgoing arc that has a thru function to continue the traversing. If there is no
outgoing arc with thru function then the traversing is stopped.

Malaysian Journal of Computer Science, Vol. 23(1), 2010 10



Step 3

Step 4

Step 5

Step 6
Step 7
Step 8

Step 9
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Group each thru function (TF) in the R-graph into sets called TF;, TF,, TF; and onwards as follows
3.1 Initially include the first thru function into TF;.
3.2 For any i, include the current thru function into TF; if the following conditions i&iii or conditions ii&iii are

satisfied.
i. Its input (resp. output) of the current thru function is same with the output (resp. input) of any thru
function in TF;.
ii. Its output of the current thru function is same with the output of any thru function in TF; and the
activators of the two thru functions are the same.
iil. Its activator is different from any input or output of the thru functions in TF;.

3.3 Create a new TF; (j#i) if necessary.

Check whether all the vertices in feedback vertex set (FVS) are covered by the generated thru function set. If
not, group those vertices into FVS’.

For each vertex of FVS’, add a new thru function so that the output (resp. input) of the new thru function is the
vertex of FVS’ and input (resp. output) of the new thru function is one of the vertex of any existing thru
function sets such that the output (resp. input) is not an activator for any thru function in the set.

Repeat Step 5 until all vertices in FVS’ are covered by the generated thru function set.
If FVS’ is not empty, link the vertices with thru function such that a new thru function is formed.

Check whether each thru function set has a primary input and primary output vertex or not. If the set does not
have any, one primary input vertex (resp. primary output vertex) in the R-graph is included into the set. If R-
graph does not have one, a new vertex is added into the set.

Add a new thru function so that the input (resp. output) of the new thru function is the added new input (resp.
output) vertex and the output (resp. input) of the new thru function is one of the vertices of any existing thru
function sets.

After the DFT insertion, we transform back thru-testable R-graph into thru-testable ADD. We synthesize the thru-
testable ADD to gate level netlist. The newly generated gate level netlist has additional gates to realize the new thru
functions.

Malaysian Journal of Computer Science, Vol. 23(1), 2010 11
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Behavioral description

\ 4

Assignment Decision Diagram (ADD)

A

Extracting thru function

v
Transforming ADD into its R-graph

\ 4

Identifying thru tree

A
DFT insertion

v
Thru-testable ADD

h 4

Synthesis using Design Vision

Gate level netlist

Fig. 8. Our proposed design for testability methodology

5.0 EXPERIMENT SETUP AND RESULTS
5.1 Experiment Setup

The experiment is conducted on ITC’99 benchmark circuits [17] where the behavioral descriptions are given. We
extract the information of thru functions from the behavioral descriptions. Tetramax is used to generate tests for the
circuits. We show the comparison of the results with partial scan circuits whose minimum feedback set of flip-flops are
scanned. Table 1 presents the characteristic of the benchmark circuits. As can be seen in Table 1, #FF represents the
number of flip-flops while PI/PO represents the number of inputs/outputs of the circuit. The number of existing thru
functions from the behavioral descriptions is described by the column of # thru functions.
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Table 1. Characteristic of the ITC’99 benchmark circuits [17]

Circuit | # Flip-flops | Area | IO pins | # Thru functions
PI | PO

ex2 59 901 35| 8 8
b03 30 422 6 |4 17
b04 66 1179 | 13| 8 40
b07 45 795 3 |8 8
b08 21 350 11| 4 8
b09 28 396 3 1 1
b10 17 344 136 10
bll 31 788 9 |6 6
bl2 121 2109 |7 |6 8
bl13 51 777 12|10 | 12
bl4 215 10651 | 34 | 54 | 31
bl5 417 12810 | 38 | 69 | 69

5.2 Experimental Results

We evaluate the effectiveness of the circuits in terms of fault efficiency, area overhead, test generation time and test
application time. Table 2 shows the area overhead where one unit of area corresponds to the size of an inverter. The
#TF added represents the number of newly added thru function and the AO(%) represents the percentage of the area
overhead. Table 3 provides the pin overhead, where the PinO denotes the number of the pin overhead while Table 4
provides the fault efficiency where red. denotes redundant faults. Table 5 and Table 6 contain the test generation time
and test application time, respectively.

Our method shows that most of the benchmark circuits with thru testability have lower area overhead compared to
partial scan designed circuits (Table 2). We added new thru functions at behavioral description before generating the
gate level netlist. Therefore, we dealt with less number of components to insert the new thru functions so that the area
overhead becomes low. Since the area overhead comes from the newly added thru function, a high area overhead is
incurred for circuits b09, b11 and b13 because the existing thru function are less. However, these circuits have a high
fault efficiency.

Table 2. Area overhead

Circuit | Area Partial Scan [3] Proposed DFT

#TF added Area AO(%) | #TF added Area AO(%)

(#TF at bit level) (#TF at ADD x bitwidth)
ex2 901 59 1314 45.84% | 49 1143 26.86%
b03 422 30 632 49.76% | 12 519 22.96%
b04 1179 66 1641 39.19% | 40 1476 25.19%
b07 795 44 1103 38.74% | 38 1122 41.13%
b08 350 21 497 42.00% | 10 437 24.86%
b09 396 21 543 37.12% | 22 557 40.66%
bl10 344 17 463 34.59% | 8 427 24.13%
bll 788 31 1004 27.41% | 38 1065 35.15%
bl2 2109 117 2928 38.83% | 31 2502 18.63%
b13 777 50 1127 45.05% | 56 1146 47.49%
bl4 10651 | 213 12142 14.00% | 164 10671 | 0.18%
bl5 12810 | 414 15708 | 22.62% | 157 13368 | 4.35%
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As shown in Table 3, all the benchmark circuits with thru testability have higher pin overhead compared to partial scan
designed circuits because in ADD, whenever a new thru function whose input (resp.output) is a new read node
corresponding to a primary input (resp.output), this results in a number of new input (resp.output) pins equal to the
bitwidth of that read (resp.write) node after synthesis. For example, two new thru functions have been added in the
ADD of benchmark circuit b03 which result in one new read node and one new write node. This one new read node is
three bits input and one new write node is also three bits output.

Table 3. Pin Overhead

Circuit | Pins Partial Scan [3] Proposed DFT
Pins PinO Pins PinO

ex2 37 38 1 58 21
b03 10 11 1 20 10
b04 21 22 1 31 10
b07 11 12 1 38 27
b08 15 16 1 27 12
b09 4 5 1 26 22
b10 19 20 1 22 3
bll 15 16 1 38 23
b12 13 14 1 34 21
b13 22 23 1 58 36
b14 88 89 1 127 35
bl5 108 109 1 127 19

Our method shows that most benchmark circuits with the thru testability having a comparable fault efficiency
compared to partial scan designed circuits as presented in Table 4. In fact, the fault efficiency of our method is higher
than a partial scan designed circuit. For example, the fault efficiency of our method is 92.42% while the fault efficiency
of partial scan is 72.03% for benchmark circuit b15.

Table 4. Fault efficiency

Circuit | FE Partial Scan [3] Proposed DFT
Detected | Red | Total | FE Detected | Red | Total | FE
ex2 69.35% | 4220 0 4228 | 99.83% | 3778 1 3856 | 98.22%

b03 69.58% | 1703 0 1704 | 99.94% | 1427 0 1446 | 98.89%
b04 83.39% | 4742 36 | 5040 | 94.76% | 4484 36 4814 | 94.27%
b07 4.11% | 2303 4 3300 | 69.90% | 3612 8 3684 | 98.37%
b08 92.62% | 1352 0 1528 | 88.48% | 1345 0 1358 | 99.26%
b09 88.18% | 1417 0 1421 | 99.51% | 1522 0 1538 | 99.15%
b10 94.32% | 1485 0 1486 | 99.93% | 1464 0 1468 | 99.83%

bll 81.1% | 3393 15 3432 ]99.30% | 3868 13 3916 | 99.18%
b12 13.75% | 7968 2 8962 | 88.95% | 7506 5 8042 | 93.48%
bl13 34.23% | 3081 67 3170 ] 99.29% | 3265 67 3380 | 98.79%

bl4 63.08% | 47104 359 | 48024 | 98.82% | 38783 1983 | 41530 | 98.08%
bl5 4.54% | 43012 176 | 59888 | 72.03% | 49751 56 53892 | 92.42%

The test generation time in Table 5, shows that most of the benchmark circuits with thru testability have shorter test
generation time compared to partial scan designed circuits except for benchmark circuits like b04 and b14. However,
the test generation times of these circuits are still shorter or not so longer than original circuit.
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Table 5. Test generation time (in seconds)

Circuit | Original Partial scan [3] | Proposed DFT
ex2 9263.78 108.91 131.93
b03 2229.25 48.13 40.21
b04 1341.99 227.46 547.57
b07 16821.17 | 11385.33 218.83
b08 326.20 878.07 2.04

b09 516.66 42.80 3.27

b10 514.10 88.91 33.93
bll 4999.26 64.50 44.68
b12 2372542 | 13360.22 6474.27
bl13 10848.61 | 113.84 56.25
bl4 6540.87 3890.92 6872.46
bl5 104084.22 | 225848.62 95379.67

For our method, the test application time is lower than partial scan designed circuits. However, the test application
time for benchmark circuits like b08, b12 and b15 are longer than partial scan designed circuits. For benchmark circuit
such as b12, although its test application time is longer than partial scan designed circuit but it has shorter test generation

time.

Table 6. Test application time (in clock cycles)

Circuit | Original | Partial scan [3] | Proposed DFT
ex2 321 1467 891
b03 340 1649 1177
b04 1448 1784 1419
b07 8 2606 1365
b08 1284 463 766
b09 2652 5958 1210
b10 1013 998 946
bll 1022 2039 1322
b12 132 6204 14568
bl13 465 1751 1298
bl4 1335 15518 3074
bl5 50 3739 18117

6. CONCLUSIONS

A new design for testability method has been introduced in this paper based on thru-testability ADD at behavioral
description. The DFT method augments a given ADD to become thru-testable ADD. Our method shows that high fault
efficiency, lower area overhead, shorter test generation time and shorter test application time in most of the ITC’99
benchmark circuits compared to partial scan designed circuits. Nowadays, the top-down design has become popular, so
the DFT at behavioral description is introduced during the early stages of the design flow to improve the testability of
the circuits.
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