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ABSTRACT 

 
Dynamic Hash Tables (DHTs) are distributed systems that maintain key-value pairs and provide efficient lookup 
services. Traditional DHTs usually rely on a random ID distribution of the keys to achieve such efficiency. 
Uniformly random hash functions are typically used to create uniformly random ID distributions from non-
random key distributions. However, there are many cases where such random hash functions cannot be applied. 
For example, those systems that provide range queries over the keys cannot apply random hash functions on the 
keys, otherwise, the range query is very difficult to support. In this paper, we present a new lookup system called 
DChord, which does not depend on the randomness assumption to achieve its performance. To show the 
performance of the proposed system, we provide mathematical analysis and extensive simulation results in a 
highly non-random USN (Ubiquitous Sensor Network) metadata identifier space. To be specific, we show that 
DChord has high regularity in terms of in-degree and out-degree distributions. Thus, the system is robust 
against random node failures. We also show that query processing load is well balanced among nodes and the 
lookup speed is deterministic in such a way that the number of nodes to visit for a query is at most log2(N).  
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1.0 INTRODUCTION 

The success of peer-to-peer systems in industry and academia is clearly manifested by their high traffic volume 
in the Internet[1]. In particular, dynamic hash tables (DHTs), which maintain key-value pairs in a peer-to-peer 
network, have been extensively studied over the last several years. Chord ([2]), Pastry ([3]), CAN ([4]), and 
Leopard ([5]) are some examples of DHTs. Those systems provide scalable lookup performance so that as the 
number of nodes in the system increases, the performance degrades gracefully. DHTs usually convert an actual 
key (possible a string) into a number, called ID of the key (usually 128 bits) and maintain the value of the key in 
a node of which ID is near the ID of the key. One of the main ideas of these DHTs is that they often use random 
hash functions such as SHA-1 to distribute keys over a uniform ID space and exploit the uniform randomness to 
construct robust peer-to-peer networks that provide an efficient lookup speed and low maintenance overhead.  
 
However, there are many cases where random hash functions cannot be applied for various reasons such as to 
support range queries. Order preserving hashing functions may solve the range query problem, but create other 
issues such as load unbalance among the nodes. Thus, if the uniform hashing function is not used, the resulting 
topology over the non-random original ID distribution becomes unbalanced in such a way that some nodes may 
have large number of neighbors and some nodes have small number of neighbors. Such an unbalanced topology 
is likely to be partitioned due to churning, where nodes join and leave frequently. 
 
Motivated by this observation, in this paper, we propose a DHT scheme, called DChord, which does not rely on 
the randomness assumption. The main idea is to use node distribution rather than ID distribution in such a way 
that each node chooses about the same number of other nodes as its neighbors on the P2P overlay network. 
Furthermore, we provide an efficient and robust stabilization scheme by exploiting the overlay structure. We 
evaluate DChord in a highly non-random ubiquitous sensor network (USN) metadata ID space. 
 
The contributions of this paper are summarized as follows.  
 

 We propose an efficient peer to peer lookup system that performs better than the existing approaches 
for the non-random ID distributions. The system is rigorously defined in a mathematical formulation. 

 We provide formal analysis on the performance of the proposed system. 
 We present an efficient and robust stabilization scheme for DChord. 
 We provide extensive simulation results that show the correctness of the formal analysis 
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The rest of the paper is organized as follows. Section 2.0 describes some background work on DHTs and some 
non-random ID distributions. The detailed operations of DChord are described in section 3.0. In section 4.0, we 
describe the performance evaluation via simulation. We conclude the paper in section 5.0. 
 
2.0 BACKGROUND 

2.1. Dynamic Hash Tables 

P2P based lookup systems are often called Dynamic Hash Table (DHT). Early systems include Chord, CAN, 
and Pastry. In these systems, the nodes form a P2P network in a systematic way so that the lookup time 
does not increase much as the number of nodes increases. The keys are hashed into random numbers and 
the values are stored in a node based on the hashed random number. To find the node that contains the value 
of a key, clients follow the same systematic procedure as they store the key value pairs.  

 
Among many DHT systems, we describe Chord in detail because DChord shares the spirit in many aspects. 
In Chord, each node randomly generates its own ID. The nodes form a ring based on their IDs. Specifically, 
the nodes are placed in a ring clockwise in the order of their IDs. Successor of a key is defined as the first 
node which has ID that is equal to or greater than the key. The key value pair is stored at the successor of 
the given key. To facilitate the lookup procedure, each node has 128 reference points (or fingers) to other 
nodes. Let id be the ID of a node. Then the fingers are successors of a series of IDs, id+2k, where k = 0, …, 
127. In other words, each node has 128 fingers to other nodes in the system and the distribution of the 
fingers are in such a way that there are more finger nodes in the near and less finger nodes are in the far. 
Lookup operation is quite straightforward in that the next hop is one of the fingers, which is the nearest to 
the target node. Due to this specific form of the finger table and the next hop choosing procedure, the 
lookup operation takes only O(log(N)) hops where N is the total number of nodes. The assumption behind 
such a good performance is that the node IDs are random. In a uniformly random ID space, the 128 fingers 
are uniformly distributed among the nodes so that the resulting topology looks like a regular topology in 
such a way that the in-degrees and out-degrees are almost the same. For the non-uniform or non-numeric 
key spaces, Chord converts the original non-random key space into a uniformly random ID space by using 
a uniform hash function such as SHA-1 so that the structural properties of Chord can be achieved. 

 
[6] discusses how to achieve the range queries in an efficient way. They propose to use hop space, which 
represents the hop distance among the nodes on the Chord-like ring, in such a way that the finger entries are 
chosen in an exponentially increasing order in the hop space. Their main contribution is to provide a 
systematic way to find the optimal finger distances with a given finger table size. To be specific, for a 
routing table (finger table) of size r, the fingers are chosen by the following formula.  
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where di is the actually hop distance from the node. As the formula suggests, the distance exponentially 
increases as i increases so that there are more fingers are in the near distance. [6] shares the same sprit as 
DChord. However, they do not provide any efficient stabilization method, which is necessary for high churn 
and high ID distribution change situations. 

 
One of the recent achievements for the range query is [7]. They present a platform for building a range-
queriable system. They decouple the object and the node that contains the object in such a way that the 
object can freely move to other nodes while the efficient lookup is still provided. The main idea of how to 
achieve such performance is to make the joining node find its position that can reduce the load of highly 
loaded nodes so that the resulting load distribution is likely to be balanced. They propose many heuristics 
on how to find such a highly loaded node. DChord is different from their idea in that DChord provides 
deterministic approach to construct the topology rather than heuristic and probabilistic.  
 
2.2 Non-Randomness Analysis 
 

To understand how the non-random ID distributions can occur and to measure the non-randomness, in this sub 

section, we introduce a measure of non-randomness and present an example of highly non-random ID 

distributions. To quantitatively measure the non-randomness, we adopt the notion of ID entropy for the instances 

of IDs [8]. For a given number of bits, b, let be an event where the number formed by the first b bits of an ID 
b
iX
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is i, , and be the probability of . We define ID-entropy, H(ID), as the following 
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With this measure, H(ID), we quantify how much random a set of IDs are.  
 
As an example of highly non-random ID distributions, we present a USN (Ubiquitous Sensor Network) metadata 
ID space. In the past several years, many researchers have been studying various issues in Ubiquitous Sensor 
Networks (USN) including operating system, programming language, fault tolerance, routing, and energy 
efficiency [9, 10, 11]. This active research is primarily due to the variety of the applications that the sensor 
networks can support [12]. However, since different applications require different services from the sensor 
networks, it is necessary to have a middleware that can provide a uniform interface to the applications regardless 
of what the physical sensor network is. This motivates the researchers to design a middleware service, so called 
the USN middleware, staying between the applications and the sensor networks [13]. Among many 
functionalities of the USN middleware, the directory service supports applications to access the metadata of 
various USN components such as sensor nodes and transducers. Due to the importance of the metadata format 
for the interoperability among heterogeneous USN systems, the USN metadata ID format is currently undergoing 
a standardization process in South Korea. One aspect of the USN metadata ID format is that it contains the 
location information (longitude and latitude) as prefixes, so it is expected that the IDs are highly localized when 
the possible locations are bounded.  
 
To examine the non-randomness of the USN metadata ID space, we randomly generated 216 IDs for Random, 
USN-Korea, and USN-USA. Random data set contains the IDs chosen randomly from 128 bit numbers. USN-
Korea and USN-USA contain the sets of IDs chosen from the metadata IDs generated in the Korean Peninsula 
and the mainland USA respectively. Table 1 shows H(ID) of 216 IDs over various numbers of bits. It is clear that 
the entropy of USN metadata IDs is low compared to that of the random IDs. In particular, when b is less than or 
equal to 5, the entropy of USN-Korea is 0, which means that the first 5 bits are the same for all the IDs. On the 
contrary, the entropy values of Random are close to the theoretical upper bound (UB). Since the area of the USA 
is much larger than that of Korea, it is expected that USN-USA show higher entropy values. Thus, the entropy 
clearly shows the degree of non-randomness.  

Table 1 H(ID) 

b Random USN-Kor USN-USA UB 

4 3.9998 0 1.8842 4 

5 4.9996 0 2.6759 5 

6 5.9993 0.9063 3.6336 6 

7 6.9985 1.5822 4.5766 7 

8 7.9973 2.5740 5.5618 8 
 
  
3.0 DCHORD LOOKUP SYSTEM 
 
In this section, we present our design of DChord as an instance of Dynamic Hash Tables. To be specific, we first 
describe the finger table and then we describe the basic operations that DChord provides. We also provide formal 
analysis on the performance of DChord in query processing and maintaining the structure.  
 
3.1. Overview 
 
In DChord system, the nodes form a ring structure among themselves based on their IDs. Each node has a unique 
id in the ID space of ) . The node with a higher ID comes later in clockwise direction as can be seen in  2,0[ m

Fig.1 
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Fig.1. Example of node distribution in DChord. 
 
In Fig.1, the nodes are placed on a ring in clockwise order and the ID space is [0, 64), i.e., m=6.  The node that 
comes right before a node is called the predecessor and the node that comes right after a node is called the 
successor of the node. Each node maintains the contact information of the predecessor and the successor. In 
addition to that, each node maintains a finger table with the following structure. To provide the definition of the 
finger table, we first define some notations.  
 

 Let )2,0[ m  be the ID space of m bits. 
 Let N be the number of nodes in the system.  
 Let log( .  )N
 Let n(i) be the ith node in the order of the IDs. As a result, node n(i+1) is the successor of n(i) and 

n(i-1) is the predecessor of n(i). One thing to note is that i+1 and i-1 are all mod N operations. For 
example, in 

k 

Fig.1, N=14 and n(13) is node 57. Then, n(13+1)=n(14 mod 14) = n(0), which is 
actually node 0.  

 
Besides the successor and the predecessor, each node chooses the first node, second node, the fourth node, eighth 
node, and so on, from itself in a clockwise direction and maintains the contact information of the chosen nodes in 
a data structure called Finger table. In general, each node chooses the set of nodes that are apart from the node in 
the 2j-th positions in a clockwise direction, where 0≤j<log2(N). The finger table, , of node n(i) is 
rigorously defined as follows.  

))(( inF

   kjforJSinF jinjin  0,))(( ),(),( , 

where is a range and is a node (called a jump node), which is the node to which n(i) sends queries 

of an ID in the corresponding range. In other words, the finger table is a set of range-jump node pairs. The 0th 

range, 

jinS ),( jinJ ),(

 )1(),(0),(  ininS in , 

is the range that the node n(i) covers, which is basically the range from its own ID to just before the ID of the 
successor. In short, each node maintains the key-value pairs whose key falls between the ID of the node and that 
of the successor of the node.  
 
The finger table entries must satisfy the following three constraints to efficiently run the lookup operation.  
 

1) Coverage Constraint 
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3) Range constraint 
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The coverage constraint is quite straightforward because if the union of the ranges in the finger table does not 
cover all the ID space, then there can certainly be some area for which the node cannot forward the query 
message. The jump node constraint is the essence of DChord. In short, the set of jump nodes is the set of nodes 
that are apart from the node in th position wherej2 kj 0 . For example, in Fig.1, n(0) is the node 0, n(1) is 
node 3, n(2) is node 8, and so on. Then, node 0 has the set of jump nodes, {3, 8, 20, 28}, because node 3 is the 
first node after node 0, node 8 is the second node, node 20 is the fourth node, and node 28 is the eighth node 
from node 0. After we determine the jump node, the range constraint is straightforward. It means that the range 
should be the union of ranges that each node covers from the jump node to the predecessor of the next jump node.  

For example,  
0),7(0),6(0),5(0),4(

22
0),(3),0(

32
nnnn

l
linn SSSSSS 




 
In Fig.1, it would be the union of areas of node 20, 22, 24, and 25, i.e., the set of nodes from the fourth node to 
the predecessor of the eighth node. Table 2 shows the finger table of node 0 and 20. It should be noted that 

because there are 14 nodes ( ). 4k 14N
 

Table 2. Finger tables of node 0 and 20 

n(i) = 0 n(i) = 20 
j 

jS ,0  jJ ,0  jS ,20  jJ ,20  

0 [0, 3) 0 [20,22) 20 

1 [3, 8) 3 [22,24) 22 

2 [8, 20) 8 [24,28) 24 

3 [20, 28) 20 [28,56) 28 

4 [28, 0) 28 [56,20) 56 
 
 
 
3.2. Location Registration, Withdrawal, and Lookup 
 
We now describe how DChord implements the three DHT operations: registration, withdrawal, and lookup of the 
key-value pairs. We assume that the key space is the same as the ID space. In other words, the keys are in 

.  )2,0[ m

 
Let a home node be the node that covers the given key, i.e., the node n(i) where ( ),0n ikey S .  
 
Basically, DChord stores a key-value pair in the home node of the key. Therefore, all the three operations require 
a search for the home node with the given key.  
 
When a node n(i) receives a request with a key k, n(i) searches the range that contains k in the finger table. If the 
k is in the 0th range, k belongs to the node and the node is the home node. Otherwise, it forwards the request to 
the jump node of the range that contains k until the home node is found. This home node searching procedure can 
be implemented recursively or iteratively. This operation is guaranteed to finish in a finite number of forwarding. 
Once the home node is found, the remaining operation is straightforward. For the registration operation, the key-
value pair is stored at the home node. For withdrawal operation, the key-value pair is revoked from the home 
node. For query operation, the key-value pair is returned to the query initiating node.  
 
In short, in the message forwarding procedure, the node that receives a message with a key, k, first checks 
whether it covers the key. If so, the node is the destination. Otherwise, the node chooses the finger table entry 
that has the largest ID but is less than or equal to k. Then, it forwards the request message to the chosen node. 
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This process repeats until the message arrives at the destination that covers the key. 
 
The performance of the three operations depends on that of the home node search operation. Let path length be 
the number of nodes that needs to be visited to find the home node. If the search operation is recursive, the path 
length is the number of hops starting from the search initiating node to the home node. The following theorem 
shows the upper bound of the path lengths. 
 
Theorem 1 : The path length of the home node searching operation is at most log2(N) under the three Constraints, 
where N is the number of nodes in the DChord system.  
 
Proof. Let s be the starting node and t be the target home node. If s = t, then the search is done. If s ≠ t, then s 
finds a jump node whose range contains the key. Let j be the position of the jump node in the finger table. Since s 
≠ t, j is not 0. By the Jump node constraint, the home node should be one of the 2j-1 nodes starting from the 
chosen jump node. Furthermore, when the next hop chooses another jump node, the position of the chosen jump 
node in the finger table is less than j because the number of nodes that precedes the lh jump node is exactly 2l-1. 
Therefore, the position of the chosen jump node is strictly decreasing at each hop. This procedure is repeated 
until the home node is found. So the path length is at most j, which is at most log2(N) . □ 
 
3.3. Node Join, Leave, and Stabilization 
 
DChord system is a dynamic network where nodes can join and leave. The node joining procedure in DChord 
system is defined as follows. When a node x joins the DChord network, it first finds the home node, h, of its own 
ID. Let s be the successor of h. Then, x puts itself between h and s. In other words, h becomes the predecessor of 
x and s becomes the successor of x. So h sets x as its successor and s sets x as its predecessor. Finally, x copies 
the finger table of h and uses it as its own finger table. The node leaving procedure is similar. When a node x 
leaves the network, the predecessor of x sets the successor of x as its successor and the successor of x sets the 
predecessor of x as its predecessor. The predecessor of x removes x from its finger table. 
 
The joining and leaving procedures defined as above are very simple. However, every time a node joins or leaves, 
the finger tables of the nodes violate the three constraints. Furthermore, it is not scalable to adjust all the finger 
tables at every join and leave operation because the number of nodes that need to adjust the finger table is about 
half of the nodes in the system. So, we design that DChord maintains only the predecessor and the successor 
information to be correct. It should be noted that the forwarding is still possible even if the finger table does not 
satisfy the finger table requirement.   
 
However, as the nodes join and leave, the entries of the finger table may not refer to the nodes of the 2j-th 
positions if they are not updated. Thus, in DChord the finger tables are updated periodically. This procedure is 
called stabilization. The stabilization procedure in DChord depends on the following property. 
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The above formula can be rephrased as follows. When a node x wants to adjust the jth jump node, it contacts the 
j-1th jump node (say t ) to get the j-1th jump node (say z) of t because z is actually jth jump node of x. For example, 
in Table 2, the 3rd jump node of node 0 is node 20, and the 3rd jump node of node 20 is node 28. So, the 4th jump 
node of node 0 is node 28. In DChord system, at each stabilization period, each node adjusts the jump nodes 
from the lowest position to the highest. So the node first adjusts the 2nd jump node (0th and 1st jump nodes are 
itself and the successor node, so they are always correct.) Then, it adjusts the 3rd, and 4th, and so forth.  
The stabilization procedure is depicted in Table 3. Finger(i) represents the i-th finger entry. Finger(0) is the 
successor node.  
 

Table 3. Stabilization procedure of a node. 
Stabilization() 

for (i = 0; Finger(i) doesn’t wrap around; i++) 

Send request msg to Finger (i) for its i-th finger entry 

Receive response msg from Finger (i) 

Set Finger (i+1) with the response 

 

Malaysian Journal of Computer Science, Vol. 23(1), 2010 
In summary, this property can be simply described as follows.  

 
42



DChord: An Efficient and Robust Peer to Peer Lookup System, pp 37-48 

The j-th finger entry of a node is the (j-1)-th finger entry of the (j-1)-th finger entry of the node. 
 
A synchronized stabilization is the one that all the nodes run the finger table update at the same phase. To be 
specific, the Finger (i+1) updates for all the nodes are initiated after all the Finger (i) updates of all the nodes are 
finished so that the finger entries received from other nodes are all valid. However, synchronization may not be 
easy to achieve among millions of nodes. Instead of running the stabilization for all the finger entries at one time, 
we may spread the updates of the finger entries over time so that we have enough time for other nodes update 
lower finger entries. Furthermore, to prevent any problem of synchronized operations, we may introduce a 
randomized update periods. More sophisticated stabilization process will be investigated in the future work. We 
also consider non periodic stabilization process. For example, a node starts the stabilization process whenever a 
new node joins before or after itself.  
 
The number of nodes for a node to contact at each stabilization period is log2(N). Therefore, ideally, constructing 
finger tables of all the nodes from empty finger tables takes only N log2(N) messages. In Chord, it takes 
O(log2(N)) for each join and leave so that the whole finger table construction takes O(Nlog2(N)), which is larger 
than that of DChord by a factor of O(log(N)). However, during the stabilization period, the path lengths can be 
longer because the three constraints can be violated in between the stabilization periods. The following theorem 
shows that the penalty (the number of extra hops) in the path lengths in between the stabilization periods is small. 
 
Theorem 2. The average path length penalty after k nodes join to a N-node stabilized DChord system without 
stabilization is 

kN

k


2 hops for  with high probability. Nk 

 
Proof : Before the additional k nodes join, the finger tables satisfy the three Constraints and there was no 
stabilization process until the k nodes join. There are N slots to which the k nodes can be inserted. Therefore, the 
average number of new nodes between a pair of consecutive original nodes is 
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So we can assume that there is at most one new node between any two old nodes. We assume that the queries are 
uniformly distributed over all the nodes.  
There are 4 cases based on whether the query originator and the target nodes are new or old. Since the newly 
joined node adjusts only predecessor and successor and there is at most one node between any two old nodes, the 
penalty for each case is as follows. 
 

 From an original node to a newly joined node : 1 hop penalty 
The query will be forwarded to the predecessor of the newly joined node and then passed to the target.  

 From an original node to an original node : 0 hop penalty 
The original nodes satisfy the three Constraints, so no penalty occurs.  

 From a newly joined node to an original node : 1 hop penalty 
Since the newly joined node has only successor and predecessor, the query will be forwarded to the 
successor and then forwarded to target node.  

 From a newly joined node to a newly joined node : 2 hop penalty 
The queries are forwarded to the successor of the query originator and to the predecessor of the target 
node and then to the target node. So the penalty is 2 hops, the first and the last. 
Let AP(n,k) be the average penalty when k nodes join to a N node DChord system. 
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0 EVALUATION 

odology 

ce of DChord with several performance metrics. The simulator is implemented in 

4.
 
4.1. Simulation Meth
 
We now evaluate the performan
Java with the typical discrete event simulation methodology. Each event (node join, leave, lookup message 
transmission, etc) has the creation time and a priority queue maintains all the events that are not processed yet.  
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ode is the number of other nodes that have finger information to this node. The out-degree of a node is the 

ations. One is the Random ID space and the other is the Non-
andom ID space. The Random ID space is the one where all node IDs are generated uniformly randomly from 

, each node should maintain the finger table, which contains the contact information to 
ther nodes. The size of the finger table is largely affected by the distribution of the node IDs. For a random node 

-Random ID space, we first look at the Random ID space case. Fig. 2 shows the 
istribution of in-degrees in Chord and DChord in the Random ID space. Specifically the minimum, maximum 

 
The performance metrics are path length, in-degree, out-degree, and query processing count. The in-degree of a
n
number of distinct nodes that the node has in its finger table. So the in-degree and out-degree represent the 
robustness of the structure in such a way that the larger the degrees are the harder the system breaks down. The 
query processing count shows how many queries each node processes. The performance metrics are computed 
for DChord and compared with that of Chord. 
 
We use two kinds of ID spaces for the simul
R
the 128 bit pattern. In non-Random ID space, we use the USN-Korea data set, which has been discussed in 
section 2.0. The reason to use Random ID space is because we want to show that DChord is also good for 
Random ID space.  
 
4.2. Load Balancing 
 
In DChord and Chord
o
IDs, Chord can only maintain O(log(N)) finger nodes.  However, when the ID space is non-Random as that of 
USN metadata, O(log(N)) may not be achieved. To see the effect, we compute the in-degree and out-degree of 
each node in each scheme.  
 
Before we look into the Non
d
and average in-degrees are shown in the figure for each node size. As the number of nodes increases, the in-
degree increases. One distinct difference between Chord and DChord is that DChord shows very stable 
distribution, i.e., the min, max, and average are the same. However, in Chord there are some nodes that have very 
small in-degree and some nodes that have very large in-degree. When a node has very large in-degree, it is likely 
to receive more messages from other nodes so that the message processing load increases for such nodes. 
However, DChord shows no variation in the in-degree, so the load in each node is well distributed.  
 

 
Fig. 2. In-degree with Random ID Space 

 
Fig. 3. Out degree with Random ID space 

 
Similarl ee with Random ID space. Fig. 3 shows the min, max, average 

-degree in Chord and DChord in Random ID space. As can be seen in the figure, the out-degree increases as 

stribution shows more severe result in Non-Random ID space. Fig. 4 shows the min, max, average in-
egree of Chord and DChord with Non-Random ID space. The most prominent result is that there is a node that has 

y we compute the distribution of out-degr
in
the number of nodes increases. However, Chord shows high variation of the out-degree, which means that the 
nodes with small out-degree is vulnerable to node failures because when all the nodes in the finger table fail, the 
node is actually disconnected from the system. On the other hand, DChord shows no variation in the out-degree, 
so that the robustness of each node is about the same. Another impact of the in-degree and out-degree 
distribution is on the amount of periodic message exchange to check whether the neighbors are alive. Since the 
degrees are the same for all the nodes in DChord, the amount of messages that each node processes is about the 
same. However, in Chord, the message processing loads are very different, which incurs load unbalance to the 
system.  

 

The degree di
d
the in-degree which is the same as that of the number of nodes in Chord. In other words, all the other nodes have 
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n distribution of degrees in DChord makes the system more balanced in terms of the number of query 
essages that each node processes. Fig. 6 shows the min, max, average query messages that each node receives 

finger information to this node. This means that when the node with the largest in-degree fails, all the other nodes 
lose one contact point to the system. Furthermore, this node behaves like a central server in the system. So a large 
number of messages are forwarded to this node, which cause unbalanced load distribution to the system. Similar 
result is shown in Fig. 5. Fig. 5 shows the min, max, and average out-degree of Chord and DChord with Non-
Random ID space. For each node count, the min out-degree is 1 in Chord. This means that there exists a node that 
has only one distinct node in the finger table. So when the only finger node fails, the node is excluded from the 
system, i.e., it cannot run any lookup operation because there is no contact point in the system that the node can use. 
However, in DChord, the out-degrees have no variation among nodes, which is the most important advantage over 
Chord. 
 
The eve
m
over the total number of query messages. The number of query messages that each node receives increases as the 
total number of queries increases. In Chord, the max count is much higher than that of DChord. The distribution is 
wider compared to that of DChord. Fig. 6 clearly shows that DChord is more balanced in terms of the number of 
queries that each node processes.  

 

 

Fig. 4. In-degree with Non-Random ID space 

 

Fig. 5. Out-degree in Non-Random ID space 

 

Fig. 6. Min, Max, Average number of queries messages over total query count 

 
4.3. Lookup Ove

s some disadvantages in the lookup speed compared to that of a centralized system 
ecause in the centralized system, only one transmission of a query message to the centralized server is enough 

kup operation, we compute the path length of the queries. Fig. 7 shows the 1  
ercentile, 99  percentile, and the average of path lengths over the number of nodes with the Non-Random ID 

rhead 
 
Peer to Peer structure ha
b
to get the location information. However, in peer to peer system, the query message is relayed through many 
peers to reach the destination.  
 
To see the overhead of the loo st

thp
space. As the number of nodes increases, the path lengths increase. As can be seen in the figure, the average path 
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queries that has 
ach path length with the Non-Random ID space. The total number of nodes is 2 . The most queries have path 

lengths are much less than log2(N). It should be noted that the unbalanced structure of Chord in Non-Random ID 
space can actually decrease the path lengths because the node with the large in-degree behaves as a centralized 
node so that most of the query messages are first forwarded to the node, and then to other nodes. 
 
A more precise distribution of the path lengths is given in Fig. 8. We compute the percentage of 

14e
length of 7, which is the half of log2(2

14). This result is similar in other node counts. So we would expect that the 
path length does not cause large overheads on the response time.  
  

Fig. 7. Path Lengths of Query Messages Fig. 8. Percentage of Queries over Path Lengths 
 
 

.4. Unbalanced Chord Topology for non-Random ID distributions. 

o node failures due to the non-random 
ode ID distribution. At the same time, load balancing cannot be achieved. For example, in Fig. 9, which shows a 

 

Fig. 9. Vulnerability of Chord System for non-Random ID and Node space 

 
5.0 CONCLUSIO

pose a lookup system that is suitable for non-random ID space. The non-random ID 
ace makes it difficult to use an existing P2P lookup system that is based on the uniformly random ID 

0

4
 
In Chord system, if hashing is not used, the Chord network is vulnerable t
n
Chord network, node 36 is the single point of failure because most of the other nodes have a finger table entry to 
this node. To be precise, node 0 has a finger table whose entries are all node 36 because there is a big empty 
range between node 0 and node 36. So if node 36 failed, then node 0 cannot forward queries because there is no 
other jump node in the table other than node 36. 

N 
 
In this paper, we pro
sp
assumption. The proposed system, DChord, does not depend on the randomness assumption. It can 
construct a uniform and load balanced lookup structure, so that the in-degree and out-degrees are the same 
for all nodes. We also show that the path lengths are less than or equal to log2(N). Furthermore, we present 
an efficient stabilization procedure so that the maintenance cost of the topology has been reduced by a 
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factor of log(N) compared to other DHT systems such as Chord. We conclude that DChord is a viable 
solution for the systems that have non-random ID distribution such as USN metadata. On the other hand, 
we have not looked at the effect of actual response time for the lookup operations. Since one hop in DChord 
may take a very large one way delay, the response time may not be proportional to the path lengths. On the 
other hand, the IDs are based on geographical location, so there is a chance to alleviate the difference 
between the path length and the actual delay by exploiting the geographical location. We plan to investigate 
this issue further in the future work.  
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