
Supervised Learning For Orphan Adoption Problem In Software Architecture Recovery. pp 287-313

287

Malaysian Journal of Computer Science. Vol. 29(4), 2016

SUPERVISED LEARNING FOR ORPHAN ADOPTION PROBLEM IN SOFTWARE
ARCHITECTURE RECOVERY

 Maryum Bibi1, Onaiza Maqbool2, Jaweria Kanwal 3

1Department of Computer Science and Information Technology, University of Azad Jammu and Kashmir.
2,3Department of Computer Science, Quaid-i-Azam University, Islamabad, Pakistan

Email: mariyam.hamdani@gmail.com1, omaqbool@gmail.com2, kjaweria09@yahoo.com3

ABSTRACT

 Maintenance of architectural documentation is a prime requirement for evolving software systems. New
versions of software systems are launched after making the changes that take place in a software system over
time. The orphan adoption problem, which deals with the issue of accommodation of newly introduced
resources (orphan resources) in appropriate subsystems in successive versions of a software system, is a
significant problem. The orphan adoption algorithm has been developed to address this problem. For evolving
software systems, it would be useful to recover the architecture of subsequent versions of a software system by
using existing architectural information. In this paper, we explore supervised learning techniques (classifiers)
for recovering the architecture of subsequent versions of a software system by taking benefit of existing
architectural information. We use three classifiers, i.e., Bayesian classifier, k-Nearest Neighbor classifier and
Neural Network for orphan adoption. We conduct experiments to compare the performance of the classifiers
using various dependencies between entities in a software system. Our experiments highlight correspondence
between the orphan adoption algorithm and the classifiers, and also reveal their strengths and weaknesses. To
combine strengths of individual classifiers, we propose using a multiclassifier approach in which classifiers
work cooperatively to improve classification accuracy. Experiments show that there is significant improvement
in results when our proposed multiclassifier approach is used.

Keywords: orphan adoption, supervised learning, architecture recovery, multiclassifiers

1.0 INTRODUCTION

Software systems evolve, particularly when changes take place in user requirements over time. Pioneering work
was carried out by Lehman in the area of software evolution when he postulated laws of software evolution
governing software change [1]. Ramil and Lehman [2] define software evolution as ‘all programming activity
that is intended to generate a new software version from an earlier version’. Thus during software evolution,
new versions are launched to accommodate the changes suggested by stakeholders.

To meet stakeholder requirements, new resources may be added in the software systems, and existing resources
may change. Vasa et al. [3] explored 275 versions for 12 object-oriented software systems and noted that for
85% of the versions, the numbers of classes changed are greater than the number of classes deleted. Moreover
they highlighted that for 80% of the versions, on the average there are 20% classes which are modified, 8% are
newly added classes and 5% are deleted classes. In [4], Ali and Maqbool studied 472 releases of 4 software
systems and found high addition and modification activities.

Due to changes made in software systems, architectural level documentation deteriorates. Even if the
documentation was complete when the system was initially developed, it may not have been updated to reflect
the changes. Thus the current architecture may be different from the documented architecture. In this situation,
the architecture of the system must be recovered to update existing documentation. For evolving software
systems, recovery of architecture is required each time a new version is introduced.

In order to recover the architecture for a certain version, it is important to appropriately accommodate newly
introduced resources (called ‘orphan resources’) in the existing structure. Tzerpos and Holt refer to this issue as
the orphan adoption problem [5], and propose the orphan adoption algorithm to address it. In an attempt to
maintain the architecture of software systems, the orphan adoption algorithm finds appropriate subsystems in

Supervised Learning For Orphan Adoption Problem In Software Architecture Recovery. pp 287-313

288

Malaysian Journal of Computer Science. Vol. 29(4), 2016

the existing subsystem hierarchy for the placement of orphan resources. The orphan adoption technique has
been adopted in many well-known reverse engineering tools [6, 7, 8, 9, 10, 11].

Machine learning is a growing field whose techniques learn from background knowledge to extract/predict
relevant information for the future. These techniques have been used to address problems in diverse areas [12],
e.g., biology [13, 14], banking [15] and marketing [16]. Machine learning techniques can broadly be categorized
into unsupervised and supervised learning. Unsupervised learning techniques work by placing data into different
groups based on similarity [17]. Supervised learning techniques are trained using pre-classified data and build a
classifier model. The classifier model then predicts a class label for data instances having unknown class labels.

Clustering, an unsupervised learning technique has been widely adopted for software architecture recovery [6, 8,
18, 19, 20]. Clustering recovers the architecture for a certain version by rebuilding the architecture (grouping
together similar entities), and does not rely on the existing architectural information. Although it is useful to use
clustering to automatically recover the architecture when documentation is not present, in many cases existing
documentation (recovered architecture) for a certain version may be available. Rather than recovering the
architecture each time a new version is launched, it may be less expensive, less time consuming and more
meaningful to update the existing architecture for subsequent versions. Supervised learning techniques
(classifiers) can use the existing information about architecture of previous versions of a software system and
update it for subsequent versions.

Multiple classifier combination methods refer to the use of more than one classifier to improve overall
classification accuracy. These methods ensemble a number of classifiers using different combination schemes,
typically serial and parallel. In the parallel ensemble classifier approach, classifiers are trained in parallel.
Output from classifiers is then combined in some way to generate the final output. In the serial classifier
combination, the output of one classifier is given as an input to another classifier (next in series). Different terms
are used for combined classification methods e.g. aggregation, combination, ensemble, multiple classifier
systems [21]. The term cooperation also refers to using more than one classifiers, where classifiers work
cooperatively to improve accuracy. Cooperation aims to combine the strengths of different classifiers, therefore
overcoming their weaknesses [22]. Delegating classifiers refer to a serial transferring multiclassifier method in
which the first classifier classifies those instances for which it is confident and rejects remaining instances. The
rejected instances are then forwarded to next classifier(s) for their appropriate classification [23].

In this paper, we explore supervised learning techniques to facilitate architecture recovery of evolving software
systems, i.e., software systems with multiple versions whose architecture is not available as they evolve. We
specifically focus on the orphan adoption problem, i.e., orphans introduced in the new versions of software
systems are accommodated in their appropriate subsystems. Our research contributions in this paper can be
summarized as: 1) We explore supervised learning techniques for architecture recovery of subsequent versions
of software systems. Three supervised techniques and their characteristics are discussed in detail, 2) We conduct
orphan adoption experiments on software systems, and highlight correspondence between the orphan adoption
algorithm and supervised learning techniques. Moreover, we analyze different dependencies/relationships such
as inheritance, containment and function calls, to evaluate their performance for orphan adoption, 3) We
propose using a cooperative approach based on multiple classifiers for the orphan adoption problem. We then
conduct experiments in order to show the effectiveness of our approach in reducing misclassifications, 4) When
orphans cannot be accommodated in existing subsystems, we suggest a criteria for new subsystem creation.

The rest of the paper is organized as follows. Section 2.0 gives an overview of related work. Section 3.0 presents
the orphan adoption algorithm. Section 4.0 describes our orphan adoption approach based on supervised
learning techniques. Section 5.0 presents detailed experimental setup. Section 6.0 discusses the experimental
results. Section 7.0 describes our proposed Delegating/Cooperative approach and experimental results. Section
8.0 defines our proposed criteria for new subsystem creation. Section 9.0 presents the threats to validity. Section
10.0 concludes the paper.

2.0 RELATED WORK

Different techniques have been suggested to automatically recover the architecture of software systems. Ducasse
and Pollet presented a state of the art for software architecture recovery approaches [24]. Their survey is
organized on the basis of the goals, the process, the inputs, the techniques and the outputs of SAR approaches.

Supervised Learning For Orphan Adoption Problem In Software Architecture Recovery. pp 287-313

289

Malaysian Journal of Computer Science. Vol. 29(4), 2016

They mention clustering, a machine learning technique, to be a quasi-automatic technique adopted for
architecture recovery. Various clustering algorithms have been proposed in this area. In [25], a clustering
technique based on hill climbing and genetic algorithms is presented, which intends to discover partitions with
low inter-cluster similarity and high intra-cluster similarity from the partitioned MDG (module dependency
graph). The technique is implemented in the BUNCH clustering tool [7]. In [11], an improved BUNCH
clustering is proposed for modularization of object oriented systems. It is shown that improved BUNCH
clustering is able to produce clusters which are more stable with respect to benchmarks. The ACDC
(Algorithm for Comprehension-Driven Clustering) algorithm follows a pattern driven approach to aid the
comprehension process of software systems [6]. This algorithm is based on some familiar patterns which are:
source file pattern, directory structure pattern, body-header pattern, leaf collection pattern, support library
pattern, central dispatcher pattern and subgraph dominator pattern. Results show that ACDC works well in
terms of performance, stability, skeleton size and quality of clusters created.

In [18], a linkage algorithm, Weighted combined algorithm (WCA) is proposed for software clustering.
Comparative analysis is performed between WCA, Complete linkage (CL) and Combined Algorithm (CA) [27].
It is concluded that WCA performs better than CL and CA. In [19], a scalable hierarchical clustering algorithm
LIMBO is introduced to efficiently decompose large systems. Weighting schemes are incorporated and results
reveal that they can be useful in clustering. Comparative analysis with other algorithms, ACDC [6], BUNCH
and cluster analysis algorithms (Single Linkage (SL), Complete Linkage (CL), Weighted Average Linkage
(WA) and Unweighted Average Linkage (UA)) show that LIMBO performs better than all algorithms except
UA.

A hybrid approach is proposed in [28] which is based on using lexical information and structural information in
the software clustering process. Kleinberg algorithm, a link analysis algorithm, is used along with the Vector
Space Model. Evaluation is performed and results are encouraging in terms of authoritativeness, stability, and
non-extremity cluster distribution.

In [29], the role of lexical information is explored in software clustering. Lexical information is weighted using
weighting scheme based on TF-IDF. Hierarchical Agglomerative Clustering (HAC) is used for clustering.
Evaluation is performed using two criteria: Authoritativeness and Non-Extremity Distribution (NED). Results
showed that the proposed approach is effective as compared to existing approaches.

In [30], a comparative analysis is performed between different software architecture recovery techniques. Six
techniques are selected for this purpose which are: ACDC [6], BUNCH [7], WCA [18], LIMBO [19], Zone-
Based Recovery (ZBR) [31] and Architecture Recovery using Concerns (ARC) [32]. These techniques are
evaluated in terms of accuracy, authoritativeness and in terms of the recovery criteria used. Overall results are
better for the ACDC and ARC algorithms. This is due the fact that the recovery criteria used in these two
algorithms reflects the mapping actually done by engineers. Recently, semantic clustering has been studied for
software remodularization which intends to use lexical based relations and conceptual metrics [33]. Semantic
clusters are generated using clustering and information retrieval techniques. It is indicated that semantic
clustering can be useful to discover the facts relevant to architects' ideas for module decomposition.

The term “cooperative” has been used in the area of clustering [34, 35]. Naseem et al. propose Cooperative
Clustering Techniques (CCT) in the area of software modularization [34]. They show that it is useful to employ
more than one algorithm in a combined way rather than using individual algorithms. For this purpose,
cooperative clustering approach is proposed in which weaknesses of individual similarity measures are avoided
by combining their corresponding strengths. Two different types of agglomerative hierarchical software
clustering algorithms are considered for experimentation. Experiments are conducted on five test software
systems. Results show that performance is significantly improved when using cooperative clustering.

Other than clustering, graph partitioning approaches, search based techniques and association rule mining have
also been used in the area of software modularization. Mitchell utilized a meta heuristic search based technique
for software clustering [36]. He emphasized creating efficient search algorithms and tools for architecture
recovery. In [37], a graph based approach is proposed in which a module dependency graph is constructed.
Module can be a file, function etc. The graph is then partitioned into subgraphs using elder vector with the goal
to increase cohesion and reduce coupling between nodes. In [38], another graph based approach is presented in
which entity-relationship graph of software systems is constructed. The recovery process is modeled as a graph
pattern matching problem. Architectural patterns are matched by applying a graph matching algorithm.

Supervised Learning For Orphan Adoption Problem In Software Architecture Recovery. pp 287-313

290

Malaysian Journal of Computer Science. Vol. 29(4), 2016

Harman applied search based algorithms for software modularization. In [39], a new cross over operator is
proposed which is more suitable for genetic techniques as compared to existing standard operators. Software
clustering is considered as a multi objective search problem in [40]. Two multi objective representations are
formed in which cohesion and coupling principles are separately represented. The multi objective approach
gives better performance as compared to the single objective approach. Association rule mining has also been
explored for architecture recovery [41]. Experimental results show the ability of proposed method to aid in
program comprehension.

Although much work has been done for software architecture recovery using clustering, supervised learning
techniques (e.g. classification) have not been explored in detail in this area. An initial study has been carried out
in [42] in which Bayesian learning has been used to update incomplete or out of date documentation of software
systems. Existing documentation of a software system is utilized and Bayesian classification has been used to
classify the new software modules into appropriate subsystems. Experiments are conducted on one software
system to validate the effectiveness of the approach.

In [43], “No Free Lunch” theorems are formulated. These theorems highlight mathematically that performance
of a single classifier cannot always be better for all problems. In [21], multiclassifier combination methods are
presented on the basis of “No Free Lunch” theorems. It is discussed that the multiclassifier approach is useful in
order to combine interesting characteristics of individual classifiers [21]. Therefore, other than using individual
classifiers, multiclassifier approach is also focused in diverse areas e.g. pattern recognition and biomedical
systems.

In [22], a multiclassifier approach has been used in the area of pattern recognition. Three different methods are
used to combine output from classifiers i.e. the highest rank, the Borda count and logistic regression methods.
Experiments are conducted on different applications e.g. on degraded machine printed characters and
handwritten digits. Results show that multiclassifier approach plays a vital role in order to improve overall
performance.

Delegation refers to the use of a classifier for the predictions of those instances for which it has a certain level
of confidence. Instances which cannot be classified by the first classifier are rejected and passed to other
classifier(s). In [23], delegating classifiers are used to study performance improvements. Experiments are
conducted on 22 datasets from the UCI dataset repository (e.g. Breast cancer, Heart diseases). It is
experimentally shown that results are significantly improved.

In [44], an extended version of Fuzzy rule-based multiclassification system is proposed. Experiments are
performed on 29 data sets (high dimensional) collected from UCI and KEEL repositories. Results are shown to
be promising in terms of high accuracy and less complexity.

Software architecture recovery is crucial for maintenance of evolving software systems. New versions of
software system are launched when software changes take place [45]. Relatively less work has been done on
utilizing software versions in the area of architecture recovery. In [46], version information is used in an
unsupervised learning technique, i.e., clustering, to provide an understandable view of a software system.
Information from multiple versions is used to improve the clustering quality.

For maintenance of architectural documentation, an orphan adoption algorithm was designed, that is based on
incremental clustering and corrective clustering [5]. Incremental clustering is proposed in an attempt to
accommodate newly introduced resources (orphan resources) in their appropriate subsystems and corrective
clustering is proposed to accommodate structural changes (resource re-adoption). The orphan adoption approach
has been adopted in many well-known reverse engineering tools [6, 7, 8, 9, 11].

The present work is different from other architecture recovery approaches based on clustering, which assume
that architectural documentation is unavailable. Since software systems generally evolve over time, and have
multiple versions, our approach is more practical since it utilizes information about architecture of a certain
version to recover architecture of a subsequent version. We specifically focus on placement of new resources in
subsystems, for which we explore supervised learning techniques. This makes our work different from other
studies done in the area.

Supervised Learning For Orphan Adoption Problem In Software Architecture Recovery. pp 287-313

291

Malaysian Journal of Computer Science. Vol. 29(4), 2016

3.0 THE ORPHAN ADOPTION ALGORITHM

The orphan adoption algorithm [5] is concerned with accommodation of newly added resources (e.g. source
files, procedures, variables) in existing subsystems. If the software structure is documented, the orphan adoption
algorithm uses certain criteria to find an appropriate subsystem for an orphan resource.

Before discussing the orphan adoption criteria, we define the terminology and an example used in subsequent
sections. Let ܴ = ,1ݎ} ,2ݎ 3ݎ … … . ܵ ,is the set of all resources {݅ݎ = ,1ݏ} ,2ݏ 3ݏ … . . is the set of all {݆ݏ
subsystems in a software system version having architectural documentation. Newly introduced resources
(orphan resources) in some subsequent version of the software system are represented as ܱ = ,1݋} ,2݋ 3݋ … .{݊݋

Consider the example in Fig. 1, in which there are six resources r1- r6 and three subsystems s1-s3 in a version
with architectural documentation. Subsystem s1 contains r1 and r2, s2 contains r3 and r4 and s3 contains r5 and r6.
Suppose there is one newly introduced resource o1 in a subsequent version of the software system. In this
example r1, r3, r5 and r6 depend (dependencies may be of different types, e.g., function calls in structured
systems, inheritance relationships in object oriented systems) on orphan resource o1. r2 is dependent on r6, r3
depends on r1 and r5 depends on r4 (dependencies are indicated by directed lines).

Fig. 1. Classification techniques and orphan adoption algorithm example.

3.1 Orphan Adoption Criteria

Tzerpos and Holt [5] defined a set of criteria to address orphan adoption. In the ‘Naming’ criteria, subsystems
for newly introduced resources are identified by using naming conventions followed e.g. a file ‘chartcolor’ may
belong to a subsystem ‘chart’. In the ‘Structural criteria’, an appropriate subsystem is found using static
dependencies, e.g., source inclusion, function calls, data references.

The set of all dependencies between resources are represented as ݀ = { ௝݀ , ݆: 1 … … . ݊ௗ}. Dependency ௝݀ can be
denoted in the form of an ordered pair, e.g., if ݀ଵ denotes a function call, then in Fig. 1, ݀ଵ = ,ଶݎ)} ,(଺ݎ ,ଷݎ) {(ଵݎ
means ݎଶ calls ݎ଺ and ݎଷ calls ݎଵ. Generally we can define all dependencies as ܦ =∪௝ୀଵ

௡ ௝݀. ݎܦݎᇱ represents that
resource ݎ depends on resource ݎᇱ.
Let (݋)ܽ݌ represent parent or subsystem of orphan resource o. Orphan resource o will be adopted in a
subsystem which depends most on o for its functionality, i.e.

(݋)ܽ݌ = ,,௞ݏ௞, ݂݅ ܹ൫ݏ ൯݋ ൒ ܹ൫ݏ௜,, ,൯݋ ∀ ݅ ∈ 1 … ݊௦

(1)

where W is the weight of dependencies between resources of existing subsystems and newly introduced
resources, ܹ൫ݏ௞,, ௞, and theݏ ൯ represents the weight of dependencies between resources of existing subsystem݋
orphan resource o. Formally, ܹ൫ݏ௞,, ൯݋ = |ܰ|, ܰ = ൛ݎห(ݎ)ܽ݌ = ,௞ݏ ∧ ൟ݋ܦݎ

Equation 1 will find the subsystem for orphans by calculating the number of dependencies that exist from the
existing subsystems to the orphans.

Supervised Learning For Orphan Adoption Problem In Software Architecture Recovery. pp 287-313

292

Malaysian Journal of Computer Science. Vol. 29(4), 2016

As an example, consider Fig. 1 in which we have to find an appropriate subsystem for o1. According to
structural criteria in equation 1, dependencies will be calculated as, W (s1, o1) = 1, W (s2, o1) = 1, W (s3, o1) = 2
as one resource r1 of s1, one resource r3 of s2 and two resources r5 and r6 of s3 are dependent on o1 which implies
that W (s3, o1) > W (s2, o1) and W (s1, o1). Subsystem s3 seems to depend most on orphan o1, as the number of
dependencies from subsystem s3 towards o1 are higher. Therefore, o1 will be accommodated in s3.

3.2 Tie-breakers in the Orphan Adoption Algorithm

Tie breakers are applicable in the situations where more than one subsystems carry equal dependency weight for
a given orphan resource (such subsystems are referred to as candidate subsystems). Two criteria are defined to
resolve such ties. The first criterion suggests accommodating the new resource in the candidate subsystem
whose interface size decreases by incorporation of the new resource. The interface size refers to the number of
resources of a subsystem on which resources of other subsystems depend for their functionality. Suppose I(s)
represents interface for subsystem s then,

(ݏ)ܫ = (ݎ)ܽ݌|ݎ} = ݏ ∧ :ᇱݎ∃ (ᇱݎ)ܽ݌ ≠ ݏ ∧ {ݎܦᇱݎ
(2)

where r represents the resource of a subsystem s upon which resource ݎᇱ depends for its functionality. ݎᇱ is not a
part of the subsystem s.

In the example given in Fig. 1, suppose that there is one resource r7 in s3 and two more resources r8 and r9 in s2,
resource r7 of subsystem s3 is also dependent on orphan resource o1 and o1 is dependent on r8and r9. For the
orphan adoption algorithm, weights of dependencies for subsystems s1, s2 and s3 then become, W (s1, o1) = 1, W
(s2, o1) = 3, W (s3, o1) = 3. Two subsystems s2 and s3 have the same weight therefore a tie results between these
subsystems. The tie between candidate subsystems s2 and s3 is resolved as follows: Defining the interfaces for
the two subsystems s2 and s3 as, I(s2) = {r4, r8, r9} and I(s3) = {r6}. Therefore Size(I(s2)) = 3 and Size(I(s3)) = 1
[5]. Now, if orphan resource o1 is accommodated in s2 then I(s2) = {r4, o1} = 2, if accommodated in s3 then, I(s3)
= {r6, o1} = 2. As the size of interface of s3 increases and interface size for s2 decreases, therefore o1 will be
accommodated in s2.

The second criterion suggests that the new resource be adopted in the candidate subsystem whose supplier set is
increased little. Suppose Sup(s) is a set of supplier subsystems for s then,

(ݏ)݌ݑܵ = ᇱݏ|ᇱݏ} ≠ ݏ ∧ :ݎ∃ (ݎ)ܽ݌ = ݏ ∧ :ᇱݎ∃ (ᇱݎ)ܽ݌ = ᇱݏ ∧ {ᇱݎܦݎ

(3)

where ݏᇱ represents the supplier for subsystem s if resource r of s depends on the resource ݎᇱ of ݏᇱ for its
functionality.
For the above example, according to second criterion supplier set for subsystems s2 and s3 is defined as, Sup(s2)
= {s1}, Sup(s3) = {s2}. After accommodation of o1 in s2, its supplier set remains Sup(s2) = {s1}. If o1 is
accommodated in s3, then its supplier set also remains Sup(s3) = {s2}. As the supplier set for both systems
remains the same therefore o1 will be accommodated either in s2 or s3.

If tie breakers cannot resolve the tie between candidate subsystems, then a subsystem is assigned to the orphan
resource randomly.

4.0 ORPHAN ADOPTION BASED ON SUPERVISED LEARNING

In this section, we present our approach for orphan adoption. We intend to use supervised learning for orphan
adoption. For this purpose, we highlight correspondence between the orphan adoption algorithm and supervised
learning in general. We then introduce three supervised learning techniques in this section.

Supervised Learning For Orphan Adoption Problem In Software Architecture Recovery. pp 287-313

293

Malaysian Journal of Computer Science. Vol. 29(4), 2016

4.1 Correspondence between Supervised Learning and the Orphan Adoption Algorithm

The orphan adoption problem and working of the orphan adoption algorithm is illustrated in Fig. 2, in which we
have existing resources R with their corresponding subsystems S = {s1, s2}. Using this information, the orphan
adoption algorithm will find appropriate subsystems for orphan resources O = {o1, o2} depending upon the
orphan adoption criteria.

 Fig. 2. Orphan adoption problem.

As described earlier, supervised learning techniques use pre-classified data for training. For the orphan adoption
problem, resources of the existing system and their corresponding subsystems represent the pre-classified data
which can be used to train a classifier. The classifier model thus, built predicts the subsystems (class labels) for
new resources (data points).

Thus, there is similarity in the working of supervised learning techniques and the orphan adoption algorithm.
Using existing information, both approaches intend to find class/subsystem for the resources with unknown
class/subsystem.

We describe three well known classification techniques, Bayesian (based on probability theory), k-Nearest-
Neighbor (an instance based learner) and Neural Networks (capable of forming relatively more complex
decision surfaces) for the orphan adoption problem.

4.2 Bayesian classification

Bayesian classification is a probability based classifier which assigns the unseen instance to a class with
maximum posterior probability. In the context of our study, Bayesian classifier can be used to predict
subsystem/class for newly introduced resources (orphan resources) based on structural criteria [5]. Bayesian
classifier follows the Bayes theorem for calculation of probabilities. For our problem, we can write the Bayes
theorem as:

(s୩|o୲)݌ =
୮൫o୲หs୩൯୮(ୱౡ)

୮(୭౪)

(4)

where k=1,2,3....j represents the number of subsystems, and t=1,2,3....n represents the number of
orphans. ݌(ݏ௞) and ݌(݋௧) are the prior probabilities for subsystem sk and orphan resource ot respectively.
 is the posterior probability of sk(௧݋|௞ݏ)݌ is the posterior probability of ot conditioned on sk and (௞ݏ|௧݋)݌
conditioned on ot. Since value of p(ot) does not change for a certain resource it can be ignored.
For the example in Fig. 1, Bayesian classifier will find the probabilities as:

Prior probabilities:

p(s1)=
ଶ

଺
= 0.33, p(s2)=

ଶ

଺
 = 0.33, p(s3)=

ଶ

଺
= 0.33

Posterior probabilities:

p(o1|s1)=
ଵ

ଶ
= 0.5, p(o1|s2)=

ଵ

ଶ
 = 0.5 , p(o1|s3)=

ଶ

ଶ
= 1

p(s1|o1)=p(o1|s1)p(s1)=0.5* 0.33 = 0.16,
p(s2|o1)=p(o1|s2)p(s2)=0.5* 0.33 = 0.16,
p(s3|o1)=p(o1|s3)p(s3)=1* 0.33 = 0.33

Supervised Learning For Orphan Adoption Problem In Software Architecture Recovery. pp 287-313

294

Malaysian Journal of Computer Science. Vol. 29(4), 2016

From the above posterior probabilities, the maximum posterior probability is 0.33 for subsystem s3, therefore
new resource o1 will be assigned to subsystem s3.

4.3 k-Nearest-Neighbor Classification

k-Nearest-Neighbor learning is a supervised learning technique that classifies an unseen tuple by extracting k
closest points (nearest neighbors) from the training data [17]. k is user defined and shows the number of nearest
neighbors. Distance metrics such as Euclidean distance, and Manhattan distance [47] are usually used to find the
nearest points.

In the context of our study, k-Nearest-Neighbor may be used to predict the subsystem for orphan resources by
extracting k number of nearest points (resources) from training data on the basis of structural criteria [5]. The
orphan resource is assigned to the subsystem having majority of k nearest resources.

We define the distance between two resources as follows: If some dependency exists between two resources
then their distance will be considered as 0. If there is no dependency between two resources then the distance
will be taken as 1. It can be seen from Fig. 1 that r1, r3, r5 and r6 depend on orphan resource o1 and two
resources r2 and r4 do not depend on o1. Therefore distance between the existing resources and orphan resources
will be calculated as:

dist(o1, r1)=0 dist(o1, r2)=1,
dist(o1, r3)=0 dist(o1, r4)=1,
dist(o1, r5)=0, dist(o1, r6)=0

k-Nearest-Neighbor will extract the specified number of nearest resources from resources dependent on o1. If no
resource is dependent on o1 then the nearest resources will be selected randomly. In order to select three nearest
neighbors, i.e., k = 3, the classifier will randomly pick three nearest neighbors from r1, r3, r5 and r6 as these four
resources are identified to be dependent on o1. If the k-Nearest-Neighbor classifier selects r1, r5 and r6, then o1
will be accommodated in s3 according to majority voting assumption. If r1, r3 and r5 are selected as nearest
neighbors, k-Nearest-Neighbor results in a tie between s1, s2 and s3 therefore o1 will be accommodated
arbitrarily in one of these subsystems.

There is a need to avoid random selection for nearest neighbors in k-Nearest-Neighbor classifier which is due to
fixed k. Thus rather than extracting k number of nearest neighbors, we select all extracted resources having
dependencies with orphan resources (NNall). This method of all nearest neighbor selection is known as the local
method [48]. In example Fig. 1, we select k = 1 + 1 + 2 = 4 nearest resources. Therefore we have r1, r3, r5, and r6
as nearest neighbors. We can see that for subsystem s3 we have majority voting of 2 nearest neighbors.
Therefore o1 will be accommodated in s3.

4.4 Neural Network

A Neural Network is a classification technique in which different neurons work collaboratively [16]. A Neural
Network is organized into input, hidden and output layers of neurons as shown in Fig. 3. There can be a number
of hidden layers between the input layer and output layer. The input layer accepts input in the form of features
for each training tuple (training data). Input is processed by the input layer, and is then weighted and fed into the
hidden layer(s). Net input for hidden and output layer is computed using the following relation:

∑=௝ܫ ௜ܱ݆݅݅ݓ ௝ߠ+ (5)

where, ݓ௜௝ is the weight of the link between previous unit i and current unit j as shown in Fig. 3. It is a small

number generated randomly e.g. [-0.5 to 0.5]. ௜ܱ represents output of previous unit i. ߠ௝ represents bias for

current input unit j which is also a small random number. Hidden layer and output layers accept the net input
and then use an activation function in order to give corresponding output. Different activation functions can be
used, e.g. sigmoid function which is as follows:

 ௝ܱ = ଵ

 ଵା௘ష಺ೕ
 (6)

Supervised Learning For Orphan Adoption Problem In Software Architecture Recovery. pp 287-313

295

Malaysian Journal of Computer Science. Vol. 29(4), 2016

In the Backpropagation method [17], the weights are adjusted for learning iteratively. Iterative learning involves
comparison of network's predicted value with target value. To minimize the error, the weights are modified and
propagated to backward layers i.e. to input layer through hidden layer(s). Error for the output layer is computed
as follows:
௝ୀݎݎܧ ௝ܱ(1െ ௝ܱ)(௝ܶ െ ௝ܱ) (7)

where, ௝ܶ is the target value for a given training tuple. Error at hidden layer is calculated as follows:

௝ݎݎܧ = ௝ܱ൫1 െ ௝ܱ൯∑ݎݎܧ௞ݓ௝௞ (8)

where, ݓ௝௞ represents weight of the link between unit j (previous layer) and unit k (next layer), ݎݎܧ௞ is the error
of unit k.
Weights and biases are updated using the following relations:

==௜௝ݓ∆ (9) ܱ݆݅ݎݎܧ(݈)

௜௝ݓ ௜௝ݓ∆ + ௜௝ݓ

==௝ߠ∆ (10) ݆ݎݎܧ(݈)

 ௝ߠ∆ + ௝ߠ௝ୀߠ

where ݈ is learning rate, whose value usually varies between 0.0 to 1.0.

Fig. 3. Neural Network.

For our orphan adoption problem, a Neural Network may be trained by using resource dependencies as input
and subsystems as output. Considering Fig. 1, dependencies r1- r6 between resources are given as input and the
three subsystems s1-s3 represent the output neurons in the output layer. When given an orphan resource, the
Neural Network will try to find an appropriate subsystem for it by finding similar dependency patterns. Since
the result of a Neural Network depends on various parameters, it is not possible to be certain about the
subsystem which is identified for the orphan resource in Fig. 1. This is unlike the working of the Bayesian and
K-Nearest-Neighbor classifier discussed earlier.

Supervised Learning For Orphan Adoption Problem In Software Architecture Recovery. pp 287-313

296

Malaysian Journal of Computer Science. Vol. 29(4), 2016

5.0 EXPERIMENTAL SETUP

5.1 Overview of Process for Experiments

We performed experiments to evaluate the performance of the orphan adoption algorithm and supervised
learning techniques. In Fig. 4, we illustrate our approach for utilizing the documentation of some software
version V1 and updating it for a subsequent version V2. Each step in the process is described in more detail in
the following sections.

 Fig. 4. Process for experiments.

5.2 Test Systems

For our experiments, we selected six object oriented open source systems JHotdraw [49], Jedit [50], Jfreechart
[51], Pmd [52], Junit [53] and Jabref [54]. These systems have been developed in Java and have continuously
evolved with the passage of time. Relevant statistics and versions of the test systems are given in Table 1. All
these systems have previously been examined in [29]. JHotdraw and Jedit have also been explored in [28].

Table 1. Test systems' statistics

5.3 Entity and Dependency Selection

We define entities to be the resources of software systems. Since in our study we used object oriented
systems, therefore we selected the classes as entities.

Dependencies are basically relationships that exist between resources. According to the structural criteria
[5], the orphan resource is placed in a subsystem which depends on the orphan resource the most. In object

System Selected Versions Files Classes Functions
Added
classes

Deleted
classes

JHotdraw
5.2 160 168 1458 - -
5.3 195 235 2183 68 1

Jedit
4.0.3 296 483 3140 - -
4.1 323 532 3564 71 22

Jfreechart
1.0.12 960 989 11363 - -
1.0.13 989 1020 11783 31 0

Pmd
4.1 184 197 1963 - -
4.2 214 229 2392 34 2

Junit
4.5 101 111 781 - -
4.8 121 135 909 24 0

Jabref
2.4.2 530 762 4488 - -
2.5 553 798 4655 36 0

V1

V2

Entity and Dependency
 Selection

Existing Documentation
 (Manually created) Version Information

 Extraction

Classification
 Process

Updated Documentation

Test Systems

Supervised Learning For Orphan Adoption Problem In Software Architecture Recovery. pp 287-313

297

Malaysian Journal of Computer Science. Vol. 29(4), 2016

oriented systems, common dependencies are, for example, inheritance, containment, and function calls.
Dependencies/relationships that we used are listed in Table 2. We have categorized these dependencies into
Direct (D) and Indirect (I). Entities are said to have a direct relationship if they are directly connected with
each other. As an example, inheritance (D) relationship exists if a class c1 is inherited from a new class cn.
To differentiate this from the case where the new class cn is inherited from an existing class c1, we call the
latter relationship “Invert inheritance”. Boolean representation is used to indicate whether a relationship
exists or not, i.e., here the relationship between c1 and cn is represented as 1. Entities are indirectly related to
each other if they share some common features [55]. For example, same inheritance hierarchy (I)
relationship exists between new class cn and existing class c1 if they are inherited from the same class c2.

Table 2. Relationships and categories

5.4 Existing Architectural Documentation

As shown in Fig. 4, architectural documentation for test systems is required. This documentation indicates the
decomposition of a system into subsystems, along with entities contained in each subsystem. We utilized
manually created documentation for a version to aid in the automatic recovery of the documentation for a later
version. To differentiate such a manually created documentation from the one created automatically, we call it
an expert decomposition.

As an example, consider JHotdraw. We used an expert decomposition for JHotdraw 5.2 to recover the
documentation for version JHotdraw 5.3.

The expert decompositions for the test systems were developed in the following manner. Expert
Decompositions for software systems Jhotdraw, Jedit, Jfreechart and Pmd were obtained using the directory
structure as in [28], [29], where a two-step procedure is followed in order to create expert decompositions for
these systems, which is described below:

 Construct the hierarchy of systems' directories and assume each directory to be a subsystem.
 If any subsystem in a hierarchy contains total number of five or less than five source files then

merge it with its parent subsystem.

In the above processes, source files are considered as entities in order to build the expert decompositions. Since
we selected classes as entities, therefore in an expert decomposition if source file f belongs to some subsystem s,
all classes within f will be considered to belong to s.

For Junit and Jabref we consulted a human expert to create decompositions for the software systems. The expert
had an MS in Computer Science, and was selected on the basis of experience in the area of object oriented

Relationship Category Description

Inheritance D Existing class inherited from orphan class

Invert Inheritance D Orphan class inherited from existing class
Same Inheritance
Hierarchy

I Orphan and existing class inherited from same class

Second Level
Inheritance

D
Orphan class inherited from existing class which is further inherited from
some other existing class

Containment D Object of orphan class is declared as member variable in existing class

Invert Containment D Declaration of object of existing class in orphan class
Same Class
Containment I

Orphan class and existing class have member variable of some other existing
class

Second level
Containment

D
Object of orphan class is member variable of existing class whose object is
member variable of some other existing class

Function calls D Function of existing class calls function of orphan class

Invert Function calls D Function of orphan class calls function of existing class
Same Function
Hierarchy I

Orphan class and existing class calls function of some other existing class

Second Level Function
Calls

D
Orphan class calls function of existing class which further calls function of
other existing class

Supervised Learning For Orphan Adoption Problem In Software Architecture Recovery. pp 287-313

298

Malaysian Journal of Computer Science. Vol. 29(4), 2016

system development, data mining and software architecture recovery. We asked the expert to develop
decompositions of systems by considering classes as entities. We provided the source code of the three software
systems, but did not reveal details about relationship information and techniques being studied. This was to
allow the expert to develop decompositions based on information he thought relevant, without influencing him
with details about the relationships we used. We gave duration of three months for creating decompositions of
the two test systems.

5.5 Version Information Extraction

To extract classes and dependencies from the source code of test systems, we used the open source fact extractor
Infusion [56]. Infusion supports c, c++ and Java based systems. It parses the source code and generates an mse
file which contains information about entities and dependencies between entities in a version of a software
system. From the mse file, we needed to extract newly introduced classes, existing classes, deleted classes and
dependencies. For this purpose, we developed our ZoomFactExtractor which extracts these entities and
relationships.

5.6 Classification Process

We used Bayesian, k-Nearest-Neighbor and Neural Network classification techniques discussed in Sections 4.2,
4.3 and 4.4 for classification of orphan resources. Information in the form of classes and dependencies from the
previous version (Section 5.5), along with the expert decomposition (Section 5.4) was used as training data for
the classifiers.

For Neural Network, we need to set some parameters, e.g. number of input neurons (IN) and output neurons
(ON). The number of input neurons was set as the number of dependencies (features) for resources. Since the
number of features varies for each test system, a separate Neural Network was required for each features. For
this purpose, we designed a generalized Neural Network, in which the number of input neurons was adjusted to
be the number of input features.

Similarly, the numbers of output neurons are the number of subsystems. The number of output neurons also
varies with respect to the test systems. We experimented with a different number of hidden neurons (HN),
systematically increasing it from one. We chose HN=3 due the fact that we got better results for this
configuration. We also need to set some other parameters relevant to a Neural Networks configuration i.e.
learning rate (l), target value (t). We set the parameters as: l=0.7, t=0.8. Target value is the output value for a
class (subsystem). Generally the target value is 1 or 0. The value 1 for a particular subsystem means that the
given instance (class here) belongs to that subsystem, and 0 means it does not belong to that particular
subsystem. To avoid complexity in backpropagation iterations, we set the target value as 0.8. If the Neural
Network finds a target value greater or equal to 0.8 for some particular subsystem, then that subsystem is
considered to be the appropriate subsystem for an orphan. We use the Sigmoid activation function represented
as a non-linear function (equation 6) as it can model those inputs which are linearly inseparable. Its output lies
between 0 and 1 so that its values can be taken as probabilities. Moreover, it has been commonly adopted in
various studies [57, 58, 59].

Table 3. Feature vector representation

Considering Fig. 1, the binary representation of features for corresponding resources is given in Table 3. Those
resources which do not convey any dependency information (do not depend on any resource) are not shown in

Existing Resources r1 r2 r3 r4 r5 r6 Subsystems

r2 0 0 0 0 0 1 S3

r3 1 0 0 0 0 0 S1

r5 0 0 0 1 0 0 S2

Supervised Learning For Orphan Adoption Problem In Software Architecture Recovery. pp 287-313

299

Malaysian Journal of Computer Science. Vol. 29(4), 2016

Table 4. According to Table 3, there will be six input neurons and three output neurons (S1- S3) in the Neural
Network structure. The number of input and output neurons can vary for each test system.

5.7 Evaluation

To evaluate the classification techniques, we used external assessment in which the automatically created
decomposition is compared with an expert decomposition. Thus expert decompositions were prepared not only
for the previous version, but also for the version for which the decomposition was recovered automatically. The
procedure followed for developing the decompositions has been discussed in Section 5.4.

To perform a comparison between the automatically created decomposition, and the one created manually for
the later version, we used the Misclassifications (MC) measure (equation 11) which calculates the percentage of
orphan classes which are classified in inappropriate subsystems:

ܥܯ =
௡௨௠௕௘௥ ௢௙ ௢௥௣௛௔௡ ௖௟௔௦௦௘௦ ௠௜௦௖௟௔௦௦௜௙௜௘ௗ

௧௢௧௔௟ ௡௨௠௕௘௥ ௢௙ ௢௥௣௛௔௡ ௖௟௔௦௦௘௦
∗ 100

(11)

MC value of 0 shows that the orphan classes are assigned to their appropriate subsystem (where appropriate
denotes that the orphan has been placed in the same subsystem as the one designated to be the correct subsystem
in the expert decomposition). An MC value of 100 shows that all orphan classes are accommodated in
inappropriate subsystems.

6.0 EXPERIMENTAL RESULTS AND ANALYSIS FOR INDIVIDUAL CLASSIFIERS AND OOA

To compare the performance of the classifiers and the orphan adoption algorithm and ease analysis, we
conducted separate sets of experiments for two cases that may arise in software systems with respect to
dependencies between the orphan and subsystems. These two cases are presented in Fig. 5, in which we have 12
resources, r1-r12, 2 subsystems, s1 and s2 and one orphan resource o1. In general, there can be x dependencies
from subsystem s1 towards o1 and y dependencies from s2 towards o1. In Case I, r1 and r6 of subsystem s1 and r7,
r8 and r12 of s2 depend on o1, thus x≠ y. In Case II, equal number of dependencies are present from existing
subsystems to orphan resource o1, so we have x ==y.

 Table 4. Relationship statistics of the test systems

Before the discussion of results, we present relationship statistics for the test systems in Table 4. It can be seen
from Table 4 that the relationship statistics vary for each test system. However, for all test systems, the number
of function calls is greater than the inheritance and containment relationships. Moreover, except for Pmd which
has a higher number of direct function calls, all other systems have a higher number of indirect function calls.
JHotdraw and JEdit have a higher number of containment relationships as compared to inheritance relationships,

System All
Inheritance

All Direct
Inheritance

All Indirect
Inheritance

All Containment All Direct
Containment

All Indirect
Containment

JHotdraw 80 43 37 149 31 118
Jedit 50 30 20 61 54 7
Jfreechart 107 19 88 27 21 6
Pmd 240 101 139 55 18 37
Junit 21 10 11 5 1 4
Jabref 78 31 47 61 21 40
System All Function

calls
All Direct
Function calls

All Indirect
Function calls All Direct All Indirect

All Direct
and Indirect

JHotdraw 57319 9839 47480 9913 47635 57548
Jedit 56301 21070 35231 21154 35258 56412
Jfreechart 30483 2627 27856 2648 27950 30598
Pmd 33594 18417 15177 18536 15353 33889
Junit 2691 1182 1509 1210 2691 1479
Jabref 34032 2941 31091 2993 31178 34171

Supervised Learning For Orphan Adoption Problem In Software Architecture Recovery. pp 287-313

300

Malaysian Journal of Computer Science. Vol. 29(4), 2016

but in all other test systems, number of inheritance relationships is higher.

6.1 Results and Discussion for Case I (x≠y)

Results for Bayesian, K-Nearest Neighbor, Orphan Adoption algorithm and Neural Network are presented for
the different relationships in Table 5. Some observations are as follows:

1. Performance of individual classifiers and orphan adoption algorithm - Results for Bayesian, K-
Nearest Neighbor and the Orphan Adoption algorithm are identical, but different from the results of
Neural Networks.

To explain these identical results, consider Case I in Fig. 5. The Bayesian classifier will calculate the
probabilities for this case as:

 p(s1|o1)=p(o1|s1)p(s1)=2/6*6/12 = 0.16

 p(s2|o1)=p(o1|s2)p(s2)=3/6 *6/12 = 0.25

The maximum posterior probability for s2 is 0.25; therefore o1 will be accommodated in s2. For k-Nearest
Neighbor, using NNall criteria, r1, r6, r7, r8 and r12 are selected as nearest resources, 3 nearest resources
belong to s2 and 2 nearest resources belong to s1. Thus, o1 will be placed in s2. The Orphan adoption
algorithm will calculate the weightage of dependencies as:

W (s1, o1) = 2, W (s2, o1) = 3, W (s2, o1) > W (s1, o1)

Therefore according to orphan adoption algorithm, o1 will be accommodated in s2 as it has higher number
of dependencies towards orphan o1.
Thus in this case, Bayesian classification, k-Nearest-Neighbor, and orphan adoption algorithm behave
identically. Behavior of these techniques is identical in all such cases where x < y or y < x, which means
that we have one subsystem among the various subsystems with higher number of dependencies with the
orphan.

Neural Network results are different from those of the other classifiers. For some relationships they are
better, and for some of them they are worse. It is relevant to note that for Case I, the Neural Networks
were trained using the dependencies between resources and subsystems (interdependencies) as features.
This was to make a comparison between them and the Bayesian classifier, k-Nearest-Neighbor, and
orphan adoption algorithm fair, since these classifiers also use only these dependencies. Thus the Neural
Network may not have been able to learn when there were a limited number of features.

Fig. 5. Two cases to study behavior of orphan adoption algorithm and supervised learning techniques.

Supervised Learning For Orphan Adoption Problem In Software Architecture Recovery. pp 287-313

301

Malaysian Journal of Computer Science. Vol. 29(4), 2016

2. Performance of relationships - It can be seen that on the average, the Inheritance relationship has

performed better than other relationships for all test systems. Moreover, indirect Inheritance performs
better than direct Inheritance for all systems except Pmd (in case of Neural Networks, results of Pmd
are better for indirect inheritance). Given the much larger number of function calls, this is an
interesting result. It indicates that the Inheritance relationship is more useful for orphan adoption as
compared to the Function call relationship.

Another observation is that combining relationships (represented by All in Table 5) degrades results
significantly. This indicates that for orphan adoption, it is more useful to analyze individual relationships.
Instead of providing useful information, combining relationships may confuse the classifiers, thus
resulting in deteriorated results. This is similar to our observation while clustering object-oriented
systems, where reasons for this behavior have also been discussed [60].

 Table 5. Experimental results for Case I (x≠y)

System

All Inheritance
All Direct
Inheritance

All Indirect
Inheritance

All Containment
All Direct
Containment

All Indirect
Containment

Bayesian/
OOA/
kNN

NN
Bayesian/

OOA/
kNN

NN
Bayesian/

OOA/
kNN

NN
Bayesian/

OOA/
kNN

NN
Bayesian/

OOA/
kNN

NN
Bayesian/

OOA/
kNN

NN

JHotdraw 50.0 46.15 62.50 55.56 28.57 50 73.33 66.67 66.67 76.15 37.50 50
Jedit 43.75 46.67 56.25 61.11 12.50 44.44 55.56 66.70 44.44 84.62 66.67 75
Jfreechart 0 42.86 12.50 45.45 0 28.57 75 62.50 75 75 85 85.71
Pmd 14 33.33 16.67 50 33.33 16.67 57 60 80 60 80 40
Junit 60 40 60 50 33 33.33 0 0 0 0 0 0
Jabref 45.45 50 81.82 58.33 36.36 41.67 83 83.33 83 66.67 100 50
Performan
ce Avg

35.53 43.16 48.29 53.40 23.96 35.78 57.31 56.53 58.18 60 64.86 50

System

All Function calls
All Direct

Function calls
All Indirect

Function calls
All Direct All Indirect

All Direct and
Indirect

Bayesian/
OOA/
kNN

NN
Bayesian/

OOA/
kNN

NN
Bayesian/

OOA/
kNN

NN
Bayesian/

OOA/
kNN

NN
Bayesian/

OOA/
kNN

NN
Bayesian/

OOA/
kNN

NN

JHotdraw 90.20 75.56 88 66 75 57.5 70 80 56.92 54.41 72.73 67.86
Jedit 62.50 70.83 62.5 67.50 56.52 61.29 71.43 72.09 61 64.62 70.31 65.71
Jfreechart 88.89 80 100 65 100 53.33 78.26 65.22 75 62.07 65.38 66.67
Pmd 50 71.43 27 85.71 50 57.14 25 75 70 76.67 63.33 74.19
Junit 88.89 60 69.23 52.94 66.67 53.85 64 66.67 78.57 57.14 75 66.67
Jabref 88.24 62.5 88.24 72.73 76.47 63.64 84.61 75 77.78 68.57 82.76 72.41
Performan
ce Avg

78.12 70 72.49 68.31 70.77 57.79 67 72.33 70 63.90 72 68.90

3. Performance of direct vs. indirect relationships - As pointed out earlier, indirect inheritance has
produced better results as compared to direct inheritance. This shows that when some existing class and
the orphan are inherited from the same class, it is reasonable to place the two classes in the same
subsystem. In case of containment, direct containment has produced better results than indirect
containment for the orphan adoption algorithm, as well as kNN and Bayesian classifiers. This indicates
that when the orphan is contained within an existing class or vice versa, this is a stronger and more
meaningful relationship than the orphan and some existing class sharing an attribute. Function call
results are almost the same for direct and indirect, and worse than those of Inheritance and
Containment despite their larger number. This indicates that function calls may not be useful to place
orphans in their appropriate subsystems.

Overall, it can be seen that misclassification rate is high. This is because certain relationships, though
higher in number, do not convey meaningful information for placement of an orphan in its appropriate
subsystem. This is an indicator that it is important to identify relevant relationships, and that semantic
details may be required in addition to the structural criteria adopted by the above approaches.

Supervised Learning For Orphan Adoption Problem In Software Architecture Recovery. pp 287-313

302

Malaysian Journal of Computer Science. Vol. 29(4), 2016

6.2 Result Discussion for Case II (x=y)

In this case, equal number of dependencies exist from existing subsystems to orphan resource o1. Since
this is a special case where the number of dependencies is equal, we first had to identify such orphans
within the test systems. It was observed that within our test systems, the number of orphans with ties
between subsystems are few even when relationships are combined and considered. For example, in case
of Jfreechart we found only four such orphans. Moreover, for two test systems i.e. Junit and Pmd we
found no orphan that results in a tie. Therefore, in order to evaluate our techniques for case II more
effectively, we generated orphans with ties. We adopted the following procedure for this purpose:

 We randomly selected 20 orphans for each test system.
 For each of these orphans, we added dependencies to create a tie. For example, if some orphan o1

has one dependency with s1 and two dependencies with s2, we added a dependency between o1 and
s1. This results in a tie between s1 and s2.

Table 6. Experimental results for Case II (x==y)

System
No. of

orphans

No. of Orphans accurately
classified

Misclassifications
Tie Breakers Neural Network Tie Breakers Neural Network

JHotdraw (actual) 12 4 7 66.67 41.67
JHotdraw (generated) 20 8 11 60 45
JHotdraw (overall) 32 12 18 63 43
Jedit (actual) 6 3 2 50 66.67
Jedit (generated) 20 9 8 55 60
Jedit (overall) 26 12 10 53 63.30
Jfreechart (actual) 4 1 3 75 25
Jfreechart (generated) 20 7 11 65 45
Jfreechart (overall) 24 8 14 70 35
Pmd (actual) 0 - - - -
Pmd (generated) 20 3 9 85 55
Junit (actual) 0 - - - -
Junit (generated) 18 6 10 77.78 44.44
Jabref (actual) 6 1 3 83.30 50
Jabref (generated) 20 0 8 100 60
Jabref (overall) 26 1 11 91.65 55

Average Misclassifications 73.40 49.29

We then performed experiments for the actual and generated orphans. Results are presented in Table 6. Please
note that in this case we have not considered individual relationships, rather we have combined them together in
order to find orphans with ties (all direct and indirect).

Once again, it can be seen that results of Bayesian classifier, k-Nearest-Neighbor classifier, and orphan adoption
algorithm are identical. To understand the reason, consider Case II in Fig. 5. For Bayesian classification,
probabilities will be calculated as:

p(s1|o1)=p(o1|s1)p(s1)=
ଶ

଺
∗

଺

ଵଶ
= 0.16

p(s2|o1)=p(o1|s2)p(s2)=
ଶ

଺
∗

଺

ଵଶ
 = 0:16

Thus there is a need to use tie breakers as posterior probabilities for both subsystems are equal.

k-Nearest-Neighbor classification using NNall criteria also results in a tie between s1 and s2, for which we will
have to use tie breakers.

In case of the Orphan Adoption Algorithm, weight of dependencies for subsystems s1 and s2 is W (s1, o1) = 2, W

Supervised Learning For Orphan Adoption Problem In Software Architecture Recovery. pp 287-313

303

Malaysian Journal of Computer Science. Vol. 29(4), 2016

(s2, o1) = 2 which implies, W (s1, o1) =W (s2, o1)

The orphan adoption algorithm recommends using tie breakers if more than one subsystems exhibit equal
weightage. Therefore in this case tie breakers are applied. We have two candidate subsystems s1 and s2. Using
the criteria specified in Section 3.2:

1. Interfaces for candidate subsystems are defined as, I(s1) = {r3} = 1, I(s2) = {} = 0. After accommodation

of orphan o1 in s1 its interface will become I(s1) = {r3, o1} = 2. If o1 is placed in s2 then its interface will
be, I(s2) = {o1} = 1. It can be seen that cardinality of interfaces for both subsystems increases. Therefore,
appropriate subsystem for o1 cannot be identified using this criterion.

2. Let us define the supplier set for candidate subsystems. Sup(s1) = {} = 0, Sup(s2) = {s1} = 1. When o1 is
assigned to subsystem s1 then Sup(s1) = {} = 0. If accommodated in s2 then Sup(s2) = {s1} = 1 which
shows that the supplier set for both subsystems remains unchanged.

Therefore tie breakers are unable to find one subsystem to which o1 belongs, therefore it will be arbitrarily
placed in one of the candidate subsystems.

To summarize, all three algorithms will use tie breakers in situations where x = y, i.e., there are equal number of
dependencies from existing subsystems to the orphan resource.

It is relevant to note that the dependencies between resources within subsystems are not given any significance
by the Bayesian classifier, the orphan adoption algorithm or the k-Nearest Neighbor during orphan adoption.
However these dependencies may be important for subsystem identification. Therefore, we need to examine
such techniques which can utilize the dependencies between the resources within existing subsystems in order to
find some pattern for an appropriate subsystem in case of equal number of dependencies (Case II).

For example, consider Fig. 6. Its tabular representation can be seen in Table 7.

In Fig. 6, we have three subsystems s1, s2 and s3 and one orphan resource o. It can be seen that the orphan
resource o has equal number of dependencies with the subsystems s1 and s2 and one dependency with
subsystem s3. In this case, the orphan adoption algorithm, Bayesian learning and k-Nearest Neighbor will
simply indicate a tie between s1 and s2. The Interface and Supplier criteria (Section 3.2) for tie breakers when
applied to this problem fail to resolve the tie.

In Fig. 6, dependencies between resources of existing subsystems indicate that if some resource has
dependencies with r2 or r3 then appropriate subsystem for that resource may be s1. Similarly, if some resource
has dependency with r5, then that resource may be accommodated in s2. A pattern which can be clearly seen is
that orphan resource o has dependency with r2 and r3. Therefore, orphan resource o should be accommodated in
s1. It should be explored whether other classification techniques can make use of intradependencies.

Fig. 6. Intradependencies between resources of subsystems

For this case, Neural Networks were trained using intradependencies as features. It can be seen from Table 6

Supervised Learning For Orphan Adoption Problem In Software Architecture Recovery. pp 287-313

304

Malaysian Journal of Computer Science. Vol. 29(4), 2016

that results for Neural Networks are better than for tie breakers for all systems except Jedit. It is also interesting
to note that the results are also significantly better than for all direct and indirect relationships in Case I. Results
of Neural Networks indicate that they are capable of detecting patterns that other classifiers, i.e. Bayesian and
KNN, were unable to detect. Comparatively low misclassifications for Neural Networks also indicate that
intradependencies between resources of existing subsystems can play a role and should be used to resolve ties.

Table 7. An example for classification techniques and orphan adoption algorithm

Existing Resources r1 r2 r3 r4 r5 r6 r7 r8 r9 subsystems

r1 0 1 1 0 0 0 0 0 0 S1

r2 0 0 1 0 0 0 0 0 0 S1

r4 0 0 0 0 1 0 0 0 0 S2

o 0 1 1 1 0 1 1 0 0 ?

6.3 Strengths and Weaknesses of Individual Classifiers

After detailed analysis of experimental results we conclude that individual classifiers (Bayesian, kNN and NN)
have their own strengths and weaknesses for Case I (x≠y) and Case II (x==y):

 For case I, where (x≠y), performance of Bayesian and kNN classifier is exactly same. In comparison
with Neural Network, it can be seen that for certain relationships Bayesian and kNN give better results
and for some relationships NN is better. No one classifier seems to be preferable over the other based
on the results in Table 5. However, Bayesian and kNN are relatively simple classifiers and
computationally less expensive as compared to Neural Network.

 For case II where (x==y), it can be seen from Table 6 that Neural Network perform better as compared
to Bayesian and kNN classifiers. In this case Neural Network discovers hidden patterns for appropriate
orphan adoption. Bayesian results in equal probabilities for more than one subsystem and kNN results
in equal number of nearest neighbors in this case. These classifiers are unable to detect hidden patterns
for appropriate placement of orphans. Therefore, tie breakers are used to resolve the tie.

We propose to combine strengths of individual classifiers (Bayesian, kNN and NN) rather to use
individual classifier for both cases. For this purpose, we propose a Delegation/ Cooperative approach.

7.0 PROPOSED DELEGATION/COOPERATIVE APPROACH

The multiclassifier approach aims to combine a set of classifiers. Predictions of classifiers are combined in order
to improve classification accuracy [21, 22, 61, 62]. Various studies discovered that classification accuracy can
be improved by using features and classifiers of different types [63, 64, 65]. In [22], it is highlighted that
strengths of individual classifiers can be combined in order to improve accuracy. Various combination schemes
have been proposed in this regard e.g. series and parallel classifiers [21].

Delegating classifiers have also been proposed to combine the strengths of classifiers [23]. These classifiers are
used in such a way that one classifier classifies those instances for which its confidence level is above a certain
threshold. Those instances which are difficult to classify by first classifier are delegated to another classifier. For
delegation, it is required to define a threshold (confidence) or decision rules which make a decision as to for

Supervised Learning For Orphan Adoption Problem In Software Architecture Recovery. pp 287-313

305

Malaysian Journal of Computer Science. Vol. 29(4), 2016

which instances the first classifier is to be applied and for which instances the other classifier(s) is to be applied.
In other words, the first classifier contributes for the subset of input for which it is confident and rejects the rest
which are then delegated to the other classifier(s). Therefore, delegated classifiers work in a cooperative way in
order to improve classification accuracy [23].

In this section, we discuss our proposed delegated/cooperative framework. As shown in Fig. 7, Classifier 1 will
classify certain instances and delegate difficult instances to Classifier 2. Results for both classifiers are
combined at the end.

 Classifier1 Classifier2

 S1 S2 S2

 S3 s3

 Fig. 7. Delegated/Cooperative framework for orphan adoption

For the orphan adoption problem, Classifier1 will classify those orphans for which it is confident and reject
other orphans. In our case, we formulate a decision rule that Classifier1 will classify those orphans for which it
finds x≠y . Therefore, Bayesian or kNN can be used as Classifier1, as for x≠y, performance of both classifiers is
the same and NN do not offer any clear advantage over these classifiers. Those orphans for which Classifier1
finds equal probability (Bayesian) or equal number of neighbors (kNN) for more than one subsystem can only
be placed randomly or by using tie breakers. At this stage, we can take advantage of a Neural Network which is
shown to identify hidden useful patterns for appropriate placement of orphans for which x==y. Therefore, we
combine classifiers in such a way that Classifier1 delegates orphans with ties to Classifier2 (Neural Network) 1.

We conducted experiments for comparing performance of our proposed delegating classifiers (DC), and
individual techniques i.e the Orphan adoption algorithm (OAA) and Neural Networks (NN) 2. For this purpose,
we consider all orphans in a test system (both for x≠y and x==y) as an input to OAA, a NN and our proposed
approach. OAA uses structural criteria (Section 3.1) for x≠y Tie breakers (Section 3.2) for the cases where
x==y. The results for OAA, NN and proposed cooperative approach are presented in Table 8. We report our
findings as follows:

1 We selected these classifiers as classifier1 (Bayesian or kNN) and classifier2 (NN) on the basis of their characteristics.
However our approach is general, i.e. any classifier can be examined and selected as classifier1 or classifier2 based on its
characteristics for this and other research problems.

2 Experiments are not conducted for Bayesian and kNN as these classifiers are used to classify those orphans for which x≠y.
Therefore, their results will be same as reported in Table 5 for this case.

S1

S2

S3

Delegated

Supervised Learning For Orphan Adoption Problem In Software Architecture Recovery. pp 287-313

306

Malaysian Journal of Computer Science. Vol. 29(4), 2016

1. Comparison between delegating classifiers, OAA and NN- Our proposed delegation approach performs

better than individual techniques i.e. OAA and NN. For OAA, performance of the proposed approach is
better for all relationships as shown in Table 8. For NN, performance of the proposed approach is better for
10 out of 12 relationships. Thus in all cases, misclassifications are reduced through the proposed approach.
This clearly shows that utilizing more than one classifier in a cooperative manner is useful for orphan
adoption. Moreover, when information cannot be obtained from interdependencies, intradependencies
between resources are important, and classifiers that can utilize patterns based on the intradependencies
(e.g. in this case Neural Networks) can be employed to reduce misclassifications. Since the orphan adoption
algorithm is unable to identify such patterns, it results in more misclassifications. It is interesting to note
that for some relationships, e.g. All indirect containment for pmd test system, behavior of OAA and
delegating classifier is similar. This is due to the fact that no such orphan exists which has equal number of
dependencies (x==y). In this situation, orphans will not be delegated to Classifier2.

Table 8. Experimental results for OAA, Neural Network (NN) and Delegating Classifiers (DC)

2. Performance of Delegating/Cooperative Approach- A comparison between the misclassifications
presented in Table 8 and Table 5 reveals some interesting facts. It can be seen that misclassification rate is
higher for the OOA and NN in Table 8 as compared to Table 5 for almost all relationships. This suggests
that although OOA is useful for the simple case (x≠y), when orphans with (x=y) are added to the dataset,
OOA’s performance deteriorates instead of improving. Similar behavior is seen in the case of Neural
Networks, which although performs well for the case (x=y), cannot perform well when the dataset contains
both inter and intradependency information. On the other hand, it can be seen from the misclassification rate
for the delegating approach that there is improvement in the results in Table 8 as compared to individual
classifiers (Table 5) for all relationships except three, i.e. All indirect containment, All indirect function calls
and All indirect relationships. Thus the proposed delegating approach is capable of making use of the orphan
information to reduce misclassifications.

3. Performance of Relationships- As far as performance of relationships is concerned, it can be seen from
Table 8 that on the average, the inheritance relationship has performed better than other relationships. This is
similar to the result reported in Table 5.

System
All Inheritance

All Direct
Inheritance

All Indirect
Inheritance

All Containment
All Direct
Containment

All Indirect
Containment

OOA NN DC OOA NN DC OOA NN DC OOA NN DC OOA NN DC OOA NN DC

JHotdraw 58 58 47 68.42 63 52.6 44.44 44 22.22 76.19 57 52.38 66.67 71 66.67 64.28 43 28.57

Jedit 52.6 63 36 63.15 58 47.36 22.22 44 11.11 69.23 62 53.84 53.84 54 38.46 75 75 50
Jfreechar
t

27 55 0 27.27 45 9.09 12.5 50 0 75 50 75 75 63 75 85 57 85

Pmd 14 57 14 16.67 57 16.67 33.33 50 33.33 75 86 75 80 71 80 80 57 80
Junit 60 80 60 60 80 60 33 66 33 0 100 0 0 100 0 0 0 0
Jabref 50 50 41 83.33 83 75 41.66 50 33.33 83 100 83 83 100 83 100 83 100
Performa
nce Avg

43.6 60 33 53.14 64 43.45 36.39 50 22.16 63.07 76 56.53 59.75 76 57.18 67.38 52 57.26

System
All Function calls

All Direct Function
calls

All Indirect Function
calls

All Direct All Indirect All Direct and Indirect

OOA NN DC OOA NN DC OOA NN DC OOA NN DC OOA NN DC OOA NN DC

JHotdraw 91.07 84 82 89.28 87 80.35 73.17 71 63.41 74 70 65.5 57 58 57 74 68 66
Jedit 67.5 63 57.5 62.5 70 57.5 58.06 65 48.38 71.43 72 71.43 63.38 63 56.33 71.83 75 64.78
Jfreechar
t

86.95 78 73.91 100 87 86.95 100 81 86.95 78.26 79 78.26 75 76 75 68.96 65 55.55

Pmd 50 55 50 27 55 27 50 60 50 25 50 25 70 65 70 63.33 67 63.33
Junit 88.23 76 76.47 58.82 82 47.07 61.53 54 53.84 64 65 64 78.57 62 78.57 75 72 75
Jabref 90.90 77 68.18 90.90 77 68.18 81.81 56 59.09 85 74 77 80 67 69.44 83.33 75 72.22
Performa
nce Avg

79.10 72 68.01 71.41 76 61.17 70.76 64 60.27 66.28 68 63.53 70.6 65 67.72 72.74 70 66.14

Supervised Learning For Orphan Adoption Problem In Software Architecture Recovery. pp 287-313

307

Malaysian Journal of Computer Science. Vol. 29(4), 2016

8.0 CASE III: NEW SUBSYSTEM CREATION

We present another situation in Fig. 8. It can be seen that there is no dependency between existing resources and
orphan resource o1.

In this case the Bayesian classifier will result in zero probabilities as calculated below:

p(s1|o1)=p(o1|s1)p(s1)=
଴

଺
∗

଺

ଵଶ

p(s2|o1)=p(o1|s2)p(s2)=
଴

଺
∗

଺

ଵଶ

In order to avoid such 0 probabilities Laplace correction is used. Using Laplace correction [17]:

p(s1|o1)=p(o1|s1)p(s1)=
଴ାଵ

଺ାଶ
∗

଺

ଵଶ
= 0.06

p(s2|o1)=p(o1|s2)p(s2)=
଴ାଵ

଺ାଶ
∗

଺

ଵଶ
= 0.06

Posterior probabilities for s1 and s2 are equal, which implies that there is a tie between these subsystems. Tie
breakers (Section 3.2) are applied to resolve the issue.

For k-Nearest Neighbor, no nearest resource is found as no resource is dependent on o1. In this situation if we
use tie breakers then k-Nearest-Neighbor will behave like the orphan adoption algorithm, if we use Laplace
correction [16] then it will behave like the Bayesian classifier.

For the Orphan Adoption Algorithm, weight of dependencies for both subsystems will be 0 (equal), i.e., W (s1,
o1) = W (s2, o1) Therefore in this case tie breakers are applied (Section 3.2).

In all such cases where x = 0 and y = 0, i.e., there is no dependency from existing resources to orphan resource,
Bayesian classification will apply Laplace correction. Laplace correction will result in a tie between subsystems
in all such cases where the subsystems contain equal number of resources. Otherwise for orphan resource,
Laplace correction discovers the subsystem which contains the highest number of resources. The Orphan
adoption algorithm will apply tie breakers in this case. k-Nearest-Neighbor classifier will behave like the orphan
adoption algorithm if we use tie breakers. If we use Laplace correction then it will behave like the Bayesian
classifier.

Handling Case III

Case III refers to the fact that entities in a system have independent existence. Such independent existence of an
entity seems unlikely as it is very unusual that an entity is completely isolated (i.e. does not relate with other
entities in a system). Moreover, if such entities exist in a system then supervised learning techniques will not
work for their placement in existing subsystems. This is due to the reason that dependency information between
orphans and existing subsystems, which is utilized by supervised learning techniques, does not exist. It is also
relevant to note that it may not always be the case that appropriate subsystems for newly introduced resources
are the existing subsystems. There are some situations where there is a need to create new subsystems for
accommodation of new resources. Carmichael et al. [66] highlighted the need for creating new containers in
order to place resources for which no appropriate subsystems are found. This case has not been explored in the
orphan adoption algorithm. We propose the use of this idea of new subsystem creation for Case III.

We can generalize the case by introducing the concept of threshold which is defined as the number of
dependencies that exist between orphan classes and existing classes. For example, threshold 0 means that
orphan class has no dependency with existing classes. However, the threshold may be changed to accommodate
system characteristics that vary from system to system. Therefore, we may define it in terms of the average
number of dependencies with orphan classes within the system. Having defined the threshold either as average
dependency or zero dependency, it can be used as follows:

Supervised Learning For Orphan Adoption Problem In Software Architecture Recovery. pp 287-313

308

Malaysian Journal of Computer Science. Vol. 29(4), 2016

Fig. 8. Zero dependency scenario

Separate all orphan classes having dependencies less than the threshold. Now examine the dependencies that
exist between separated orphan classes. All orphan classes which are similar with each other (number of
dependencies is greater than or equal defined threshold) are grouped together in a new subsystem. All remaining
orphans (with interdependencies less than threshold) will be accommodated:

i) existing subsystems according to structural criteria, or
ii) into a separate new subsystem.

9.0 THREATS TO VALIDITY

In this section we discuss the threats that may affect our work and results, and how we have tried to reduce the
threats.

Internal validity

We have shown the similar behavior of supervised learning techniques and orphan adoption algorithm
analytically. Thus the similar results of the three techniques cannot be by chance. We acknowledge that for Case
II where x = y, the number of orphans was not large, thus to check the behavior of Neural Networks, we
randomly modified orphan details to create the required scenario. Since the additions/deletions for this purpose
were random, we expect that Neural Networks will in general perform better and their better performance is not
due to chance or any particular characteristic of the test systems. This is also supported through the results of the
multiclassifier approach where we did not change any orphan particulars (no additions/deletions), yet the
approach gave better results.

Construct validity

We have used well known relationships that are present in object oriented systems. These relationships have
been divided into direct and indirect for better understanding and analysis of results. The misclassification
measure is an objective measure to indicate the number of misplaced orphans. Some element of subjectivity is
introduced during evaluation, since evaluation of results of our approach is carried out through comparison with
an expert decomposition prepared manually. However, to reduce problems, expert decompositions for software
systems Jhotdraw, Jedit, Jfreechart, and Pmd were obtained using the directory structure as in [28], [29]. For
Junit and Jabref we requested a human expert to develop the decompositions. The expert had experience in
object oriented development and had a thorough understanding of architectural concepts. He was also given
sufficient time to understand the systems and form the decompositions.

External validity

For our experiments we selected six software systems written in Java. We selected common relationships

Supervised Learning For Orphan Adoption Problem In Software Architecture Recovery. pp 287-313

309

Malaysian Journal of Computer Science. Vol. 29(4), 2016

between classes for these systems e.g. inheritance, containment, which are expected to be present in any object
oriented system and are not specific to Java. The test systems are reasonably large, with the average number of
classes in the considered version and subsequent version being 452 and 491. The average number of orphans in
the subsequent version is 44. We acknowledge that the number of orphans is not large when we consider the
case x == y (case II). However, we have tried to randomly generate orphans for this case to evaluate it more
effectively (6.2).

10.0 CONCLUSIONS AND FUTURE WORK

The orphan adoption problem is a significant problem faced when recovering the architecture of evolving
software systems. Clustering, an unsupervised machine learning technique has been focused for software
architecture recovery. However, clustering techniques usually do not utilize the existing architectural
documentation for a certain version even if available for recovering the architecture of subsequent versions of
evolving software systems. In this paper, we employed supervised learning techniques (classifiers) for the
orphan adoption problem in order to aid the architecture recovery of evolving software systems.

Supervised learning techniques avail existing architectural information to appropriately adopt the orphan
resources (newly introduced resources) in subsystems in subsequent versions of software systems. We
conducted experiments on six Java systems having multiple versions and analyzed the correspondence between
orphan adoption algorithm and supervised learning techniques. Our experimental results reveal the strengths of
the various classifiers and also indicate that intradependencies (dependencies between entities within
subsystems) may be important in addition to interdependencies (dependencies between entities among
subsystems). Based on the identified strengths, we proposed a delegated/cooperative approach in which more
than one classifier cooperate to solve the orphan adoption problem. We conducted experiments to evaluate the
delegated approach and found significant improvement in orphan classification accuracy. We also
recommended a criterion for new subsystem creation.

In the future, we intend to explore semantic relationships that exist in a software system and study their
performance. Moreover, we aim to use other classifiers in our proposed framework e.g. Support vector machine.

REFERENCES

[1] M. Lehman. “Laws of software evolution revisited”. Proceedings of the European Workshop on Software
Process Technology, pp. 108-124, 1996.

[2] J.F. Ramil and M.M. Lehman. “Effort estimation from change records of evolving software”. Proceedings

of the International Conference on Software Engineering, pp. 777, 2000.

[3] R. Vasa, J.G. Schneider, and O. Nierstrasz. “The inevitable stability of software change”. Proceedings of
the International Conference on Software Maintenance, pp. 4-13, 2007.

[4] S. Ali and O. Maqbool. “Monitoring software evolution using multiple types of changes”. Proceedings of

the International Conference on Emerging Technologies, pp. 410-415, 2009.

[5] V. Tzerpos and R.C. Holt. “The orphan adoption problem in architecture maintenance”. Proceedings of the
Working Conference on Reverse Engineering, pp. 76-82, 1997.

[6] V. Tzerpos and R.C. Holt. “ACDC: an algorithm for comprehension-driven clustering”. Proceedings of the

Working Conference on Reverse Engineering, pp. 258-267, 2000.

[7] B.S. Mitchell and S. Mancoridis. “On the automatic modularization of software systems using the bunch
tool”.

 IEEE Transactions on Software Engineering, Vol. 32, No. 3, pp.193-208, 2006.

[8] C. Patel, A. Hamou-Lhadj, and J. Rilling. “Software clustering using dynamic analysis and static
dependencies”. Proceedings of the European Conference on Software Maintenance and Reengineering, pp.
27-36, 2009.

Supervised Learning For Orphan Adoption Problem In Software Architecture Recovery. pp 287-313

310

Malaysian Journal of Computer Science. Vol. 29(4), 2016

[9] PBStookit. Pbs toolkit. http://www.swag.uwaterloo.ca/pbs/ , 2011.

[10] A.E. Hassan and R.C. Holt. “Towards a better understanding of web applications”. Proceedings of the
Interna-tional Workshop on Web Site Evolution, pp. 112-116, 2001.

[11] Zhao, Junfeng and Zhou, Jiantao and Yang, Hongji, “Modularizing Legacy System through an Improved

Bunch Clustering Method in Cloud Migration”, International Journal of Grid and Distributed Computing,
Vol. 8, No. 4, pp. 1-10, 2015

[12] T.M. Mitchell. ‘The discipline of machine learning”. Technical Report CMU-ML-06-108, Machine

Learning Department , Carnegie Mellon University, 2006.

[13] A.C. Tan and D. Gilbert. “An empirical comparison of supervised machine learning techniques in

bioinformatics”. Proceedings of the Asia-Pacific Bioinformatics Conference on Bioinformatics, pp. 219-
222, 2003.

[14] M. Giardina, F. Azuaje, P. McCullagh, and R. Harper. “A supervised learning approach to predicting

coronary heart disease complications in type 2 diabetes mellitus patients”. Proceedings of the Symposium
on BioInfor-matics and BioEngineering, pp. 325-331, 2006.

[15] S. Maes, K. Tuyls, B. Vanschoenwinkel, and B. Manderick. “Credit card fraud detection using bayesian

and neural networks”. Proceedings of the 1st International NAISO Congress on Neuro Fuzzy
Technologies.

[16] I.H. Witten and E. Frank. “Data Mining: practical machine learning tools and techniques”. Morgan

Kaufmann, 2005.

[17] L. B. Huang, V. Balakrishnan, R.G. Raj, "Improving the relevancy of document search using the multi-

term adjacency keyword-order model." Malaysian Journal of Computer Science, Vol. 25, No. 1, pp. 1-10,
2012.

[18] O. Maqbool and HA Babri. “The weighted combined algorithm: A linkage algorithm for software

clustering”.
 Proceedings of the European Conference on Software Maintenance and Reengineering, pp. 15-24, 2004.

[19] P. Andritsos and V. Tzerpos. “Information-theoretic software clustering”. IEEE Transactions on Software

Engineering, Vol. 31, No. 2, pp.150-165, 2005.

[20] Q. Zhang, D. Qiu, Q. Tian, and L. Sun. “Object-oriented software architecture recovery using a new hybrid

clustering algorithm”. Proceedings of the International Conference on Fuzzy Systems and Knowledge
Discovery, pp. 2546-2550, 2010.

[21] R.G. Raj, S. Abdul-Kareem, “Information Dissemination And Storage For Tele-Text Based Conversational

Systems' Learning”, Malaysian Journal of Computer Science, Vol. 22(2), pp. 138-159, 2009.

[22] M. A. Shayegan, S. Aghabozorgi, R. G. Raj, “A Novel Two-Stage Spectrum-Based Approach for
Dimensionality Reduction: A Case Study on the Recognition of Handwritten Numerals,” Journal of Applied
Mathematics, vol. 2014, Article ID 654787, 14 pages, 2014. doi:10.1155/2014/654787

[23] Ferri, Cesar and Flach, Peter and Herandez-Orallo, Jose, “Delegating classifiers”, Proceedings of the

twenty-first international conference on Machine learning, pp. 37, 2004.

[24] Stephane Ducasse and Damien Pollet. “Software architecture reconstruction: A process-oriented
taxonomy”. IEEE Transactions on Software Engineering, Vol. 35, No. 4, pp.573-591, 2009.

[25] S. Mancoridis, B.S. Mitchell, C. Rorres, Y. Chen, and E.R. Gansner. “Using automatic clustering to pro-

duce high-level system organizations of source code”. Proceedings of the International Workshop on
Program Comprehension, pp. 45-52, 1998.

Supervised Learning For Orphan Adoption Problem In Software Architecture Recovery. pp 287-313

311

Malaysian Journal of Computer Science. Vol. 29(4), 2016

[26] Vanderlei, Taciana A and Durao, Frederico A and Martins, Alexandre C and Garcia, Vinicius C and
Almeida, Eduardo S and de L Meira, Silvio R, “A cooperative classification mechanism for search and
retrieval software components”, Proceedings of the 2007 ACM symposium on Applied computing, pp. 866-
871, 2007

[27] M. Saeed, O. Maqbool, HA Babri, SZ Hassan, and SM Sarwar. “Software clustering techniques and the use

of combined algorithm”. Proceedings of the European Conference on Software Maintenance and
Reengineering, pp. 301-306, 2003.

[28] G. Scanniello, A. D'Amico, C. D'Amico, and T. D'Amico. “Using the kleinberg algorithm and vector

space model for software system clustering”. Proceedings of the International Conference on Program
Comprehension, pp. 180-189, 2010.

[29] R.G. Raj and S. Abdul-Kareem. “A Pattern Based Approach for The Derivation Of Base Forms Of Verbs

From Participles And Tenses For Flexible NLP”. Malaysian Journal of Computer Science, Vol. 24(2), pp
63-72, 2011.

[30] Joshua Garcia, Igor Ivkovic, and Nenad Medvidovic. “A comparative analysis of software architecture

recovery techniques. In Automated Software Engineering (ASE)”, International Conference on Automated
Software Engineering (ASE), pp. 486-496. IEEE, 2013.

[31] Anna Corazza, Sergio Di Martino, and Giuseppe Scanniello. “A probabilistic based approach towards

software system clustering”. In European Conference on Software Maintenance and Reengineering
(CSMR), pp. 88-96. IEEE, 2010.

[32] Joshua Garcia, Daniel Popescu, Chris Mattmann, Nenad Medvidovic, and Yuanfang Cai. “Enhancing archi-

tectural recovery using concerns”. International Conference on Automated Software Engineering
IEEE/ACM, pp. 552-555, 2011.

[33] Gustavo Santos, Marco Tulio Valente, and Nicolas Anquetil. “Remodularization analysis using semantic
clustering”. In the European Conference on Software Maintenance, Reengineering and Reverse
Engineering (CSMR-WCRE), pp. 224-233. IEEE, 2014.

[34] Naseem, Rashid and Maqbool, Onaiza and Muhammad, Siraj, “Cooperative clustering for software

modularization”, Journal of Systems and Software, Vol. 8, No. 86, pp. 2045—2062, 2013

[35] Kashef, Rasha, “Cooperative clustering model and its applications”, Ph.D. dissertation, 2008

[36] Brian S Mitchell. “A heuristic approach to solving the software clustering problem. In International
Conference on Software Maintenance”, 2003. In the European Conference on Software Maintenance, pp.
285-288. IEEE, 2003.

[37] Shaheda Akthar and Sk MD Ra. “Recovery of software architecture using partitioning approach by edler

vector and clustering”. Computer and Information Science, 3(1): pp. 72, 2010.

[38] K. Sartipi. Software architecture recovery based on pattern matching. Proceedings of the International Con-
ference on Software Maintenance, pp. 293-296, 2003.

[39] Mark Harman, Robert M Hierons, and Mark Proctor. “A new representation and crossover operator for

search-based optimization of software modularization”. In Proceedings of the Genetic and Evolutionary
Computation Conference, Vol. 2, pp. 1351-1358, 2002.

[40] Kata Praditwong, Mark Harman, and Xin Yao. “Software module clustering as a multi-objective search

problem”. IEEE Transactions on Software Engineering, Vol. 37, No. 2, pp. 264-282, 2011.

[41] C. Tjortjis, L. Sinos, and P. Layzell. “Facilitating program comprehension by mining association rules
from source code”. Proceedings of the International Workshop on Program Comprehension, pp. 125-132,
2003.

[42] O. Maqbool and HA Babri. “Bayesian learning for software architecture recovery”. Proceedings of the

Supervised Learning For Orphan Adoption Problem In Software Architecture Recovery. pp 287-313

312

Malaysian Journal of Computer Science. Vol. 29(4), 2016

Interna-tional Conference on Electrical Engineering, pp. 1-6, 2007.

[43] Wolpert, David H, The lack of a priori distinctions between learning algorithms, Neural Computation, Vol.
8, No. 7, pp. 1341—1390, MIT Press, 1996

[44] Trawinski, Krzysztof and Cordon, Oscar and Quirin, Arnaud, Random oracles fuzzy rule-based

multiclassifiers for high complexity datasets, International Conference on Fuzzy Systems (FUZZ), pp. 1-8,
2013

[45] H. Kagdi. “Improving change prediction with ne-grained source code mining”. Proceedings of the

IEEE/ACM International Conference on Automated Software Engineering, pp. 559-562, 2007.

[46] A. Wierda, E. Dortmans, and L. Somers. “Using version information in architectural clustering-a case
study”.

 Proceedings of the European Conference on Software Maintenance and Reengineering, pp. 214-228,
2006.

[47] B. Liu. Web data mining. Springer, 2007.

[48] T.M. Mitchell. Machine learning. Mc Graw Hill, 1997.

[49] WebsiteJHotdraw. Jhotdraw source system. http://www.jhotdraw. org/, 2011.

[50] WebsiteJedit. Jedit source system. http://www.jedit.org/, 2011.

[51] WebsiteJfreechart. Jfreechart source system. http://www.jfree.org /jfreechart/, 2011.

[52] WebsitePmd. Pmd source system. http://www.pmd.sourceforge.net/, 2011.

[53] WebsiteJunit. Junit source system. http://www.junit.org/, 2011.

[54] WebsiteJabref. Jabref source system. http://www.jabref. sourceforge.net/, 2011.

[55] M. Trifu. Architecture-aware, adaptive clustering of object oriented systems. Master's thesis, University of
Timisoara.

[56] WebsiteInfusion. Infusion parser. http://www.intooitus.com/, 2011.

[57] Guoqiang Zhang, B. Eddy Patuwo, Michael Y. Hu , “Forecasting with artificial neural networks: The state

of the art”, International Journal of forecasting, Vol. 14, No. 1, pp. 35-62, 1998

[58] Warner, Brad and Misra, Manavendra , “Understanding Neural Networks as Statistical Tools”, The

american statistician, Vol. 50, No. 4, pp. 284-293, 1996

[59] “Tuning of the Structure and Parameters of Neural Networks using an Improved Genetic Algorithm”, IEEE
transactions on Neural Networks, Vol. 14, No. 1, pp. 79-89, 2003

[60] Siraj Muhammad, Onaiza Maqbool, Abdul Qudus Abbasi, "Evaluating Relationship Categories for

Clustering Object-Oriented Software Systems", IET Software, 6(3): pp. 260-274, June 2012

[61] Valentini, Giorgio and Masulli, Francesco. “Ensembles of learning machines”. LNCS, Springer, pp. 3-20,
2002

[62] A. Qazi, H. Fayaz, A. Wadi, R. G. Raj, N.A. Rahim, W. A. Khan, “The artificial neural network for solar

radiation prediction and designing solar systems: a systematic literature review”, Journal of Cleaner
Production, vol. 104, pp. 1-12, 2015. ISSN 0959-6526,
http://dx.doi.org/10.1016/j.jclepro.2015.04.041.(http://www.sciencedirect.com/science/article/pii/S0959652
615004096)

Supervised Learning For Orphan Adoption Problem In Software Architecture Recovery. pp 287-313

313

Malaysian Journal of Computer Science. Vol. 29(4), 2016

[63] R. Bradford and T. Nartker, “Error correlation in contemporary OCR systems,” 1st International.

Conference on Document Analysis and Recognition, Saint-Malo. France, pp. 516-523, 1991.

[64] T. K. Ho, J. J. Hull, and S. N. Srihari, “Combination of structural classifiers”, IAPR Syntactic and
Structural Pattern Recognition Workshop. Murray Hill, NJ, pp. 123-136, 1990.

[65] T. K. Ho, A Theory of Multiple Classifier Systems and Its Application to Visual Word Recognition. Ph.D.

dissertation, Dept. of Computer Science. SUNY at Buffalo. 1992

[66] I. Carmichael, V. Tzerpos, and R.C. Holt. “Design maintenance: unexpected architectural interactions

(expe-rience report)”, Proceedings of the International Conference on Software Maintenance, pp. 134-137,
1995.

