Using Neural Networks to Explicate Human Category Learning: A Simulation of Concept Learning and Lexicalisation

Main Article Content

Syed Sibte Raza Abidi

Abstract

Presents a ?hybrid? neural network architecture comprising two Kohonen maps interrelated by Hebbian connections to perform a neural network based simulation of the development of a ?concept memory?, ?word lexicon? and ?concept lexicalisation? in an unsupervised learning environment using realistic psycholinguistic data. The results of the simulation demonstrate how neural networks, incorporating unsupervised learning mechanisms, can indeed simulate the learning of categories amongst children. The work demonstrates the efficacy of neural networks towards providing some insights into the elusive mechanisms that lead to the emergence of human categories and an explication of inherent conceptual categories

Downloads

Download data is not yet available.

Article Details

How to Cite
Raza Abidi, S. S. (1997). Using Neural Networks to Explicate Human Category Learning: A Simulation of Concept Learning and Lexicalisation. Malaysian Journal of Computer Science, 10(2), 60–71. Retrieved from https://mjcs.um.edu.my/index.php/MJCS/article/view/3099
Section
Articles